302 research outputs found

    Identification of a new European rabbit IgA with a serine-rich hinge region

    Get PDF
    <div><p>In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of <i>IGHV</i>a1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.</p></div

    Cosmic CARNage I: on the calibration of galaxy formation models

    Get PDF
    We present a comparison of nine galaxy formation models, eight semi-analytical, and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of comoving width 125h−1 Mpc, with a dark-matter particle mass of 1.24 × 109h−1M) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some ‘memory’ of any previous calibration that served as the starting point (especially for the manually tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3σ. The second calibration extended the observational data to include the z = 2 SMF alongside the z ∼ 0 star formation rate function, cold gas mass, and the black hole–bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models, we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available

    Equivalent widths of Lyman α\alpha emitters in MUSE-Wide and MUSE-Deep

    Full text link
    The aim of this study is to better understand the connection between the Lyman α\alpha rest-frame equivalent width (EW0_0) and spectral properties as well as ultraviolet (UV) continuum morphology by obtaining reliable EW0_0 histograms for a statistical sample of galaxies and by assessing the fraction of objects with large equivalent widths. We used integral field spectroscopy from MUSE combined with broad-band data from the Hubble Space Telescope (HST) to measure EW0_0. We analysed the emission lines of 19201920 Lyman α\alpha emitters (LAEs) detected in the full MUSE-Wide (one hour exposure time) and MUSE-Deep (ten hour exposure time) surveys and found UV continuum counterparts in archival HST data. We fitted the UV continuum photometric images using the Galfit software to gain morphological information on the rest-UV emission and fitted the spectra obtained from MUSE to determine the double peak fraction, asymmetry, full-width at half maximum, and flux of the Lyman α\alpha line. The two surveys show different histograms of Lyman α\alpha EW0_0. In MUSE-Wide, 20%20\% of objects have EW0>240_0 > 240 \r{A}, while this fraction is only 11%11\% in MUSE-Deep and 16%\approx 16\% for the full sample. This includes objects without HST continuum counterparts (one-third of our sample), for which we give lower limits for EW0_0. The object with the highest securely measured EW0_0 has EW0=589±193_0=589 \pm 193 \r{A} (the highest lower limit being EW0=4464_0=4464 \r{A}). We investigate the connection between EW0_0 and Lyman α\alpha spectral or UV continuum morphological properties. The survey depth has to be taken into account when studying EW0_0 distributions. We find that in general, high EW0_0 objects can have a wide range of spectral and UV morphological properties, which might reflect that the underlying causes for high EW0_0 values are equally varied. (abridged)Comment: 28 pages, 21 + 1 figures, 7 + 1 tables, accepted for publication in A&

    Probing the faint end Luminosity Function of Lyman Alpha Emitters at 3<z<7 behind 17 MUSE lensing clusters

    Get PDF
    We present a study of the galaxy Lyman-alpha luminosity function (LF) using a sample of 17 lensing clusters observed by the MUSE/VLT. Magnification from strong gravitational lensing by clusters of galaxies and MUSE apabilities allow us to blindly detect LAEs without any photometric pre-selection, reaching the faint luminosity regime. 600 lensed LAEs were selected behind these clusters in the redshift range 2.9<zz< 6.7, covering four orders of magnitude in magnification-corrected Lyman-alpha luminosity (39.0<logLL< 43.0). The method used in this work (VmaxV_{\text{max}}) follows the recipes originally developed by arXiv:1905.13696(N) (DLV19) with some improvements to better account for the effects of lensing when computing the effective volume. The total co-moving volume at 2.9<zz<6.7 is \sim50 103Mpc310^{3}Mpc^{3}. Our LF points in the bright end (log L)>42 are consistent with those obtained from blank field observations. In the faint luminosity regime, the density of sources is well described by a steep slope, α2\alpha\sim-2 for the global redshift range. Up to log(L)\sim41, the steepening of the faint end slope with redshift, suggested by the earlier work of DLV19 is observed, but the uncertainties remain large. A significant flattening is observed towards the faintest end, for the highest redshift bins (logLL<41). Using face values, the steep slope at the faint-end causes the SFRD to dramatically increase with redshift, implying that LAEs could play a major role in the process of cosmic reionization. The flattening observed towards the faint end for the highest redshift bins still needs further investigation. This turnover is similar to the one observed for the UV LF at z6z\geq6 in lensing clusters, with the same conclusions regarding the reliability of current results (e.g.arXiv:1803.09747(N); arXiv:2205.11526(N)).Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in A\&

    A new species of Schoutedenichia Jadin & Vercammen-Grandjean, 1954 from Madagascar and a re-description of S. dutoiti (Radford, 1948) from South Africa (Acariformes: Trombiculidae)

    Get PDF
    A new chigger mite species, Schoutedenichia microcebi n. sp. is described from the grey mouse lemur Microcebus murinus (J.F. Miller) from Madagascar. The new species is closely related to S. dutoiti (Radford, 1948), a species described from a single specimen collected on a rodent in South Africa. Examination of the holotype and new material on S. dutoiti from South Africa enabled us to re-describe this species and provide new data on its hosts and geographical distribution

    The JWST Emission Line Survey (JELS): the sizes and merger fraction of star-forming galaxies during the Epoch of Reionization

    Get PDF
    We used observations from the JWST Emission Line Survey (JELS) to measure the half-light radii () of 23 H-emitting star-forming (SF) galaxies at in the PRIMER/COSMOS field. Galaxy sizes were measured in JWST near-infrared camera observations in rest-frame H (tracing recent star formation) with the F466N and F470N narrow-band filters from JELS, and compared against rest-- and -band (tracing established stellar populations) and near-ultraviolet sizes. We find a size–stellar mass () relationship with a slope that is consistent with literature values at lower redshifts, though offset to lower sizes. We observe a large scatter in at low stellar mass ( ) which we believe is the result of bursty star formation histories (SFHs) of SF galaxies at the Epoch of Reionization (EoR). We find that the stellar and ionized gas components are similar in size at . The evidence of already-established stellar components in these H emitters (HAEs) indicates previous episodes of star formation have occurred. As such, following other JELS studies finding our HAEs are undergoing a current burst of star formation, we believe our results indicate that SF galaxies at the end of the EoR have already experienced a bursty SFH. From our relationship, we find for fixed stellar mass , which is in agreement with other observations and simulations of SF galaxies in the literature. We find a close-pair (major) merger fraction of () for galaxy separations , which is in agreement with other studies
    corecore