26 research outputs found

    Arsenic Release Metabolically Limited to Permanently Water-Saturated Soil in Mekong Delta

    No full text
    Microbial reduction of arsenic-bearing iron oxides in the deltas of South and Southeast Asia produces widespread arsenic-contaminated groundwater. Organic carbon is abundant both at the surface and within aquifers, but the source of organic carbon used by microbes in the reduction and release of arsenic has been debated, as has the wetland type and sedimentary depth where release occurs. Here we present data from fresh-sediment incubations, in situ model sediment incubations and a controlled field experiment with manipulated wetland hydrology and organic carbon inputs. We find that in the minimally disturbed Mekong Delta, arsenic release is limited to near-surface sediments of permanently saturated wetlands where both organic carbon and arsenic-bearing solids are sufficiently reactive for microbial oxidation of organic carbon and reduction of arsenic-bearing iron oxides. In contrast, within the deeper aquifer or seasonally saturated sediments, reductive dissolution of iron oxides is observed only when either more reactive exogenous forms of iron oxides or organic carbon are added, revealing a potential thermodynamic restriction to microbial metabolism. We conclude that microbial arsenic release is limited by the reactivity of arsenic-bearing iron oxides with respect to native organic carbon, but equally limited by organic carbon reactivity with respect to the native arsenic-bearing iron oxides

    Soil-Aggregate-Scale Heterogeneity in Microbial Selenium Reduction

    No full text
    Given the role of Se as both an environmental contaminant and a micronutrient, the microbial reduction and subsequent sequestration of bioavailable Se in soils are of great ecological interest. Primary particles in surface soils are typically bound into loosely packed, microporous aggregates, which may be critical spatial units in determining the fate of Se in soils. Surrounded by macropores where preferential flow rapidly advects dissolved compounds, soil aggregates are domains of slow diffusive transport where spatial variations in chemical concentrations and biogeochemical reactions can prevail. We conducted a series of controlled flow-through experiments utilizing three-dimensional, artificial soil aggregates (2.5-cm i.d.) surrounded by a macropore. Aggregates were composed of either quartz sand or ferrihydrite-coated sand inoculated with one of two Se-reducing bacteria (Thauera selenatis or Enterobacter cloacae SLD1a-1). Selenite export rates varied between 0.02 ± 0.01 and 3.4 ± 0.2 nmol h−1 g−1 as a function of aeration condition and input solution composition (higher SeO4 2− or C-source concentrations led to higher SeO3 2− export). Oxic input conditions significantly decreased Se reduction; however, the detection of SeO3 2− in effluent samples indicates the occurrence of anoxic microzones within aggregates. Furthermore, we found that solid-phase concentrations of reduced Se increased toward the core of aggregates and are estimated to at least double within the first millimeter into the aggregate under all conditions investigated. This indicates that concentrations of reduced Se may generally be expected to increase with distance from the advection boundary (macropore) inside aggregates, which would imply that soils with larger aggregates retain more Se
    corecore