12 research outputs found

    Reversion to an embryonic alternative splicing program enhances leukemia stem cell self-renewal

    No full text
    Formative research suggests that a human embryonic stem cell-specific alternative splicing gene regulatory network, which is repressed by Muscleblind-like (MBNL) RNA binding proteins, is involved in cell reprogramming. In this study, RNA sequencing, splice isoform-specific quantitative RT-PCR, lentiviral transduction, and in vivo humanized mouse model studies demonstrated that malignant reprogramming of progenitors into self-renewing blast crisis chronic myeloid leukemia stem cells (BC LSCs) was partially driven by decreased MBNL3. Lentiviral knockdown of MBNL3 resulted in reversion to an embryonic alternative splice isoform program typified by overexpression of CD44 transcript variant 3, containing variant exons 8-10, and BC LSC proliferation. Although isoform-specific lentiviral CD44v3 overexpression enhanced chronic phase chronic myeloid leukemia (CML) progenitor replating capacity, lentiviral shRNA knockdown abrogated these effects. Combined treatment with a humanized pan-CD44 monoclonal antibody and a breakpoint cluster region - ABL proto-oncogene 1, nonreceptor tyrosine kinase (BCR-ABL1) antagonist inhibited LSC maintenance in a niche-dependent manner. In summary, MBNL3 down-regulation-related reversion to an embryonic alternative splicing program, typified by CD44v3 overexpression, represents a previously unidentified mechanism governing malignant progenitor reprogramming in malignant microenvironments and provides a pivotal opportunity for selective BC LSC detection and therapeutic elimination

    Reversion to an embryonic alternative splicing program enhances leukemia stem cell self-renewal

    No full text
    Formative research suggests that a human embryonic stem cell-specific alternative splicing gene regulatory network, which is repressed by Muscleblind-like (MBNL) RNA binding proteins, is involved in cell reprogramming. In this study, RNA sequencing, splice isoform-specific quantitative RT-PCR, lentiviral transduction, and in vivo humanized mouse model studies demonstrated that malignant reprogramming of progenitors into self-renewing blast crisis chronic myeloid leukemia stem cells (BC LSCs) was partially driven by decreased MBNL3. Lentiviral knockdown of MBNL3 resulted in reversion to an embryonic alternative splice isoform program typified by overexpression of CD44 transcript variant 3, containing variant exons 8–10, and BC LSC proliferation. Although isoform-specific lentiviral CD44v3 overexpression enhanced chronic phase chronic myeloid leukemia (CML) progenitor replating capacity, lentiviral shRNA knockdown abrogated these effects. Combined treatment with a humanized pan-CD44 monoclonal antibody and a breakpoint cluster region - ABL proto-oncogene 1, nonreceptor tyrosine kinase (BCR-ABL1) antagonist inhibited LSC maintenance in a niche-dependent manner. In summary, MBNL3 down-regulation–related reversion to an embryonic alternative splicing program, typified by CD44v3 overexpression, represents a previously unidentified mechanism governing malignant progenitor reprogramming in malignant microenvironments and provides a pivotal opportunity for selective BC LSC detection and therapeutic elimination

    ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis

    No full text
    Post-transcriptional adenosine-to-inosine RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) promotes cancer progression and therapeutic resistance. However, ADAR1 editase-dependent mechanisms governing leukemia stem cell (LSC) generation have not been elucidated. In blast crisis chronic myeloid leukemia (BC CML), we show that increased JAK2 signaling and BCR-ABL1 amplification activate ADAR1. In a humanized BC CML mouse model, combined JAK2 and BCR-ABL1 inhibition prevents LSC self-renewal commensurate with ADAR1 downregulation. Lentiviral ADAR1 wild-type, but not an editing-defective ADAR1(E912A) mutant, induces self-renewal gene expression and impairs biogenesis of stem cell regulatory let-7 microRNAs. Combined RNA sequencing, qRT-PCR, CLIP-ADAR1, and pri-let-7 mutagenesis data suggest that ADAR1 promotes LSC generation via let-7 pri-microRNA editing and LIN28B upregulation. A small-molecule tool compound antagonizes ADAR1's effect on LSC self-renewal in stromal co-cultures and restores let-7 biogenesis. Thus, ADAR1 activation represents a unique therapeutic vulnerability in LSCs with active JAK2 signaling

    Detection and targeting of splicing deregulation in pediatric acute myeloid leukemia stem cells

    No full text
    Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy

    Detection and targeting of splicing deregulation in pediatric acute myeloid leukemia stem cells

    No full text
    Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy

    Biological Oxidation-Reduction Catalysts

    No full text

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore