223 research outputs found

    The making of convergence : knowledge reuse, boundary spanning, and the formation of the ICT industry

    Get PDF
    While mastering technology and industry convergence are essential for firms across a growing number of industries, convergence is often rapid and abrupt, challenging firms to develop appropriate strategic responses. Focusing on the historical convergence between information technology and communication technology, we examine the microlevel behaviors of scientists initiating and driving convergence. Analyzing a bibliometric dataset of 257 641 scientific articles, we demonstrate how industry convergence manifests in a microlevel scientific convergence, preceding industry convergence by several decades. Our article contributes to the literature on convergence by developing new bibliometric measures for scientific convergence, and by contrasting microlevel behaviors that underpin convergence. Based on our findings, we offer a set of methods and strategies to assist managers in technology-based businesses with anticipating and responding to convergence in a timely manner

    The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes

    Get PDF
    The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE–formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRβ clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.</jats:p

    Optimal stomatal behaviour around the world

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordStomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium)

    Optimal stomatal behaviour around the world

    Full text link
    © 2015 Macmillan Publishers Limited. All rights reserved. Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate

    Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work.</p> <p>Methods</p> <p>We measured pain, blood pressure (BP), heart rate (HR) and skin blood flow (BF) during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH) and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation.</p> <p>Results</p> <p>Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery.</p> <p>Conclusion</p> <p>It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition.</p

    Vertebrate Paralogous MEF2 Genes: Origin, Conservation, and Evolution

    Get PDF
    BACKGROUND: The myocyte enhancer factor 2 (MEF2) gene family is broadly expressed during the development and maintenance of muscle cells. Although a great deal has been elucidated concerning MEF2 transcription factors' regulation of specific gene expression in diverse programs and adaptive responses, little is known about the origin and evolution of the four members of the MEF2 gene family in vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: By phylogenetic analyses, we investigated the origin, conservation, and evolution of the four MEF2 genes. First, among the four MEF2 paralogous branches, MEF2B is clearly distant from the other three branches in vertebrates, mainly because it lacks the HJURP_C (Holliday junction recognition protein C-terminal) region. Second, three duplication events might have occurred to produce the four MEF2 paralogous genes and the latest duplication event occurred near the origin of vertebrates producing MEF2A and MEF2C. Third, the ratio (K(a)/K(s)) of non-synonymous to synonymous nucleotide substitution rates showed that MEF2B evolves faster than the other three MEF2 proteins despite purifying selection on all of the four MEF2 branches. Moreover, a pair model of M0 versus M3 showed that variable selection exists among MEF2 proteins, and branch-site analysis presented that sites 53 and 64 along the MEF2B branch are under positive selection. Finally, and interestingly, substitution rates showed that type II MADS genes (i.e., MEF2-like genes) evolve as slowly as type I MADS genes (i.e., SRF-like genes) in animals, which is inconsistent with the fact that type II MADS genes evolve much slower than type I MADS genes in plants. CONCLUSION: Our findings shed light on the relationship of MEF2A, B, C, and D with functional conservation and evolution in vertebrates. This study provides a rationale for future experimental design to investigate distinct but overlapping regulatory roles of the four MEF2 genes in various tissues

    Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment

    Get PDF
    Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses

    A case of mistaken identity: HSPs are no DAMPs but DAMPERs

    Get PDF
    Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1–5, 2007; Kono and Rock, Nat Rev Immunol 8:279–289, 2008; Martin-Murphy et al., Toxicol Lett 192:387–394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395–1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue

    Inhaled corticosteroids and long-acting beta-agonists in adult asthma: a winning combination in all?

    Get PDF
    In the recent years, considerable insight has been gained in to the optimal management of adult asthma. Most adult patients with asthma have mild intermittent and persistent disease, and it is acknowledged that many patients do not reach full control of all symptoms and signs of asthma. Those with mild persistent asthma are usually not well controlled without inhaled corticosteroids (ICS). Studies have provided firm evidence that these patients can be well controlled when receiving ICS, especially when disease is of recent onset. This treatment should be given on a daily basis at a low dose and when providing a good response should be maintained to prevent severe exacerbations and disease deterioration. Intermittent ICS treatment at the time of an exacerbation has also been suggested as a strategy for mild persistent asthma, but it is less effective than low-dose regular treatment for most outcomes. Adding a long-acting beta-agonist (LABA) to ICS appears to be unnecessary in most of these patients for optimising control of their asthma. Patients with moderate persistent asthma can be regarded as those who are not ideally controlled on low-dose ICS alone. The combination of an ICS and LABA is preferred in these patients, irrespective of the brand of medicine, and this combination is better than doubling or even quadrupling the dose of ICS to achieve better asthma control and reduce exacerbation risks. An ICS/LABA combination in a single inhaler represents a safe, effective and convenient treatment option for the management of patients with asthma unstable on inhaled steroids alone. Ideally, once asthma is under full control, the dose of inhaled steroids should be reduced, which is possible in many patients. The duration of treatment before initiating this dose reduction has, however, not been fully established. One of the combinations available to treat asthma (budesonide and formoterol) has also been assessed as both maintenance and rescue therapy with a further reduction in the risk for a severe exacerbation. Clinical effectiveness in the real world now has to be established, since this approach likely improves compliance with regular maintenance therapy

    Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis)

    Get PDF
    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships.This work was partially supported by Spanish Ministry of Education and Science co-funded by FEDER program (CGL2012-31668), the European Union and the National Ministry of Education and Religion of Greece (EPEAEK- Environment – Archimedes), the Slovenian Research Agency (program P4-0015), and the USDA Forest Service. The cooperation among international partners was supported by the COST Action FP1106, STREeSS
    corecore