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Main text  77 

Stomatal conductance is a key land surface  attribute as it links plant water-use and carbon 78 

uptake. In this study we synthesised a globally distributed database of stomatal 79 

conductance data sets obtained in the field for a wide range of plant functional types (PFTs) 80 

and biomes. We employed a model of optimal stomatal conductance
1
 to assess differences 81 

in stomatal behaviour. We estimated the model slope coefficient, g1, which is directly 82 

related to the marginal carbon cost of water-use, for each dataset. We then tested how g1 83 

varies with climatic factors, including  temperature and water availability, and across PFTs. 84 

We found that g1 varied  considerably among PFTs, with evergreen savanna trees having 85 

the largest g1 (least conservative water-use), followed by C3 grasses and crops, angiosperm 86 

trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with larger  87 

wood density had a larger  marginal carbon cost of water-use, as predicted by the theory 88 

underpinning the optimal stomatal model. There was an interactive effect between 89 

temperature and moisture availability (on g1: for wet environments, g1 was largest in high 90 

temperature environments, indicated by high mean annual growing degree days above 0
o
C 91 

(mGDD0), but it did not vary with mGDD0 across dry environments. These findings 92 

provide a robust theoretical framework for understanding and predicting the behaviour of 93 

stomatal conductance across biomes and across PFTs that can be applied to regional, 94 

continental and global-scale modelling of productivity and ecohydrological processes in a 95 

future changing climate. 96 

 97 

Earth System Models (ESMs) integrate biogeochemical and biogeophysical land surface 98 

processes with physical climate models and have been widely used to demonstrate the 99 
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importance of land surface processes in determining climate and to highlight the issue of 100 

large uncertainties   in quatifying land surface processes
2, 3, 4, 5

. Within the biogeophysical 101 

components of  land surface processes, stomatal conductance plays a pivotal role because it 102 

is a key feedback route for carbon and water exchange between the atmosphere and 103 

terrestial vegetation. Stomata are small pores on leaves whose behaviour can be regulated 104 

by the plant in response to multiple abiotic and biotic factors. Stomatal conductance (gs) is 105 

a major determinant of  both transpiration rates and rates of photosynthetic C uptake. . 106 

Therefore, our ability to model the global carbon and water cycles under future changing 107 

climate depends on our ability to predict stomatal behaviour globally
1
, an ability that to-108 

date has remained particularly intractactable . Although there have been previous synthesis 109 

studies on plant stomatal conductance and related traits
6, 7, 8, 9

, a global scale database and 110 

associated mechanistic globally applicable model of gs that would allow prediction of 111 

stomatal behaviour is lacking. 112 

 113 

For this study, we compiled a unique global database of field measurements of stomatal 114 

conductance and photosynthesis suitable for extracting model parameters. We employed a 115 

model of optimal stomatal conductance
1
 to develop hypotheses for how stomatal behaviour 116 

should vary with environmental factors and with plant traits associated with hydraulic 117 

function. In the optimal stomatal model, the slope parameter, g1, is proportional to the 118 

marginal carbon cost of water-use
1
, meaning that plants with smaller g1 values are more 119 

conservative with their water-use and have higher water-use-efficiency (and vice versa). 120 

Therefore, we hypothesised that variation in g1 values among climate zones and PFTs 121 

should reflect differences in the cost of water transport. We proposed that: 122 

(1) g1 values among PFTs should vary according to the cost of stemwood construction, 123 

such that C3 herbaceous species should have the largest  g1 (i.e. least conservative water-124 



6 
 

use), followed by angiosperm trees and gymnosperm trees. Since the optimal stomatal 125 

theory predicts that, for the same marginal water cost, g1 should be lower by approximately 126 

one-half 10
. We therefore predicted that C4 plants would have the smallest  g1. 127 

(2) For trees, the cost of water transport should increase with wood density, due to the 128 

higher cost of wood construction
11

 and the generally smaller hydraulic conductance of 129 

sapwoos with large density. Therefore within both angiosperms and gymnosprems, trees 130 

with highest wood density should have the smallest  g1.  131 

(3) Moisture stress should increase the cost of water-use to the plant, so plants in dry 132 

environments should have a larger  marginal cost of water-use and lower g1.  133 

(4) g1 values should increase with temperature for two reasons. First, we previously 134 

showed that g1 is  approximately proportional to a combination term of the carbon cost of 135 

water transport and    (the CO2 compensation point in absence of photorespiration)
1
. As 136 

   is exponentially dependent on temperature
1, 12

, g1 should similarly increase with 137 

temperature. Second, the viscosity of water decreases with increasing temperature, making 138 

it less costly to transport water leading to a increased g1
13

.  139 

 140 

To test these hypotheses, we collated a globally distributed database of gs and 141 

photosynthesis of 56 field studies, covering a wide range of biomes from Arctic tundra, 142 

boreal and temperate forest to tropical rainforest (Table S1). We estimated the model 143 

coefficient, g1, from observations of leaf-level gas exchange (gs , ratesd of transpiration  144 

and net photosynthesis , see Methods) and environmental drivers. We used mean annual 145 

degree days above 0
◦
C (mGDD0) and moisture index (MI) derived from observed long-146 

term meteorological data as  proxies to quantify the temperature and water availability that 147 

are relevant to plant physiological functions for each site
14

. The growing degree days 148 

above 0
◦
C is an index of the energy available for completion of the annual life cycle and 149 
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quantifies  temperature limitations to  carbon assimilation and growth
15, 16

. Our database 150 

covered  a range of mGDD0 from 2.7 to 29.7 
o
C and a range of MI from 0.17 to 3.26,  151 

representing  the majority of the climatic space for vegetation covered land surfaces (Fig. 152 

1). We then tested how g1 varies with MI and mGDD0 across PFTs and biomes?. 153 

 154 

We found a clear pattern of g1 variation among different PFTs with evergreen savanna 155 

trees having largest g1, followed by C3 grasses and crops, angiosperm trees, gymnosperm 156 

trees, and C4 grasses (Table S2 and Fig. 2). For angiosperm trees, g1 was negatively 157 

correlated with wood density, although we did not find any correlation for gymnosperm 158 

species (Fig. 3).  g1 significantly increased  with both increasing mGDD0 and MI across the 159 

entire data set. However, when evaluated as a bivariate relationship (Fig. 2c-d, and Fig. 4a-160 

b) we observed that there was an interactive effect between temperature and moisture 161 

availability on g1: for wet environments, g1 was largest at sites with high mGDD0, but it 162 

varied with mGDD0 to a much smaller  degree across dry environments (Table 1 and Fig. 163 

4).  164 

Our results largely supported our hypotheses for how g1 should vary among PFTs 165 

(hypothesis 1) and biomes. The variation in g1 among PFTs is a result of trade-offs among 166 

plant functions such as growth, defence and reproduction, through different resource 167 

allocation patterns that aim to achieve the optimal cost-to-benefit ratios
8, 13

 Long life-span 168 

PFTs, such as evergreen gymnosperm and angiosperm trees, must invest more in building 169 

supporting and defence structures relative to short life-span PFTs, such as grasses, so that 170 

they can be sustained over many years of biotic and abiotic stress. Such an investment 171 

preference has to come at the cost of reduced growth rates
17, 18

, meaning reduced the rates 172 

of carbon uptake  and water loss cost through opening stomata. Therefore we predicted  a 173 

more conservative water-use strategy in trees (lower g1) than in C3 grass (higher g1), and 174 
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this was observed in the database. However, evergreen savanna trees formed an exception 175 

with a surprisingly large g1,  relative to expectations based upon trees wood density and 176 

biomes MI. This may  result  from the fact that these species have several unique hydraulic 177 

functional traits that may offset the carbon cost of water-use which  allow them to have a 178 

less conservative water use strategy. These  hydraulic functional traits include: deep roots 179 

to access groundwater, large sapwood area for water transport, narrow but long conduits to 180 

reduce the risk of embolism and reduce the cost of conduit wall construction
19, 20

 and dry 181 

season declines in LAI to balance increased atmospheric aridity in the dry season . This 182 

special case of evergreen savanna trees is worthy of further investigation. 183 

 184 

We found a significant relationship between g1 and wood density among angiosperm trees 185 

(Fig. 3; excluding savanna angiosperms) which supported our hypothesis that g1 is 186 

negatively correlated with wood density (hypothesis 2).  A larger  wood density is 187 

advantagous for plants that need to avoid hydraulic failure  so that they can sustain more 188 

negative sapwood water pressures during drought
18

. However, such an investment is at the 189 

expense of a reduced capacity for stem water storage, reduced sapwood conductivity and 190 

the carbon cost of building wood with higher density
20, 21, 22

, and thus leads to a more 191 

conservative water-use-strategy. However, we did not find such a relationship among 192 

gymnosperm trees. This lack of correlation may be due to the limited variability in wood 193 

density in gymnosperms. There are significant differences in the anatomical structure of 194 

sapwood  between angiosperms and gymnosperms. The majority of angiosperm trees have 195 

evolved to separate the water transport structure (i.e. vessels) from the mechanical support 196 

structure, while gymnosperm trees do not have such a functional differentiation, as 197 

tracheids are used for both water transport and mechanical support
18, 23

. Therefore, wood 198 

density is a good proxy for quantifying the trade-offs between transport and support 199 
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investments for angiosperm trees but not for gymnosperm trees
23

. The distinct differences 200 

in the water-use strategy between angiosperm trees and gymnosperm trees (Fig. 2) is 201 

consistent with a recent observation that angiosperms maintain a much smaller hydraulic 202 

safety margin than gymnosperms
24

, showing that angiosperms allow some loss of 203 

hydraulic conductivity – a risky strategy – while gymnosperms minimise  lossThis 204 

evolutionary development confers an advantage to angiosperm trees by allowing them to 205 

use water in a less conservative way, thereby increasing their  carbon gain relative to  206 

gymnosperm trees. 207 

 208 

Our results only partially supported our hypotheses for how g1 should vary with moisture 209 

stress and temperature (hypotheses 3 and 4  as there was an interactive effect between 210 

temperature and moisture stress on g1. This interactive response between MI and mGDD0 211 

demonstrates the complexity of how plants co-ordinate their resource allocation strategies 212 

along two axes of climatic gradient (Fig. 4). Temperature affects the cost of water transport 213 

in such a way that it should be more costly to transport water in a colder environment than 214 

in a warmer one. However, lower temperature also comes with water savings as the 215 

evaporative demand and photorespiratory cost are lower. The interactive relationship 216 

between MI and mGDD0 suggest  that the rate of change in g1 (i.e. the slope of each 217 

exponential curve; Fig. S3) along temperature or water availibility gradient is much higher 218 

in the wet and warm environments than in dry and cold environments. 219 

 220 

Our study demonstrated the first mechanistically robust framework that can be applied to 221 

various scales for understanding and predicting the behaviour of stomatal conductance 222 

across biomes and across PFTs. We analysed a global stomatal behaviour data set along 223 

two major climatic axes, providing an analytic framework  for  understanding  how 224 
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stomatal behaviour adapts to the environment. Our findings will allow the ESM 225 

community to move on from using empirical stomatal models (ref ref) with tuned 226 

parameters to using a more robust, theory-derived optimal stomatal model with meaningful 227 

parameters. In addition, we provide a valuable stomatal behaviour database that can be 228 

used to parameterise gs  among PFTs and which can be applied directly within ESMs for 229 

modelling productivity and ecohydrological processes in a future changing climate across 230 

regional, continental and global scales. 231 

 232 

  233 
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Methods  234 

Source of data  235 

We synthesised published and unpublished leaf gas exchange data sets for a wide range of 236 

PFTs and biomes (Table S1). Our database covers 314 species from 56 experiment sites 237 

around the world with 17 sites from Australasia, 15 sites from Europe, 14 sites from North 238 

America, six sites from Asia, three sites from South America and one site from Africa. Site 239 

latitudes range from 42.9
o
S to 72.3

o
N although the majority of the sites are within the 240 

temperate zone (n=35; latitude range between 23.5
o
 to 55

o
 and between -23.5

o
 and -55

o
), 241 

followed by tropical zone (n=14; latitude range between -23.5
o
 and 23.5

o
), boreal zone 242 

(n=6; latitude range between 55
o
 and 66.5

o
) and Arctic zone (n=1; latitude range above 243 

66.5
o
). We used MI and mGDD0 derived from Climate Research Unit data (CRU TS3.1)

25
 244 

from 1991 to 2010 using a modified version of the STASH model
26

 at a grid resolution of 245 

0.5
o
. In this derivation, mGDD0 was calculated as the ratio of the annual sum of 246 

temperatures above 0
o
C (growing degree days) to the length of the period with 247 

temperatures above 0
o
C; MI was calculated as the ratio of mean annual precipitation to the 248 

equilibrium evapo-transpiration (Eeq). We estimated Eeq from temperature and net radiation 249 

(calculated from monthly mean percentage of cloud cover) based on the Priestley-Taylor 250 

equation
26

. The Sea-WiFS fAPAR (fraction absorbed photosynthetically active radiation) 251 

product was used to determine areas with green vegetation cover at a grid resolution of 0.5
o
. 252 

The wood density data were obtained from the Global Wood Density Database
23, 27

. 253 

 254 

Data analysis 255 

We used data points measured at a photosynthetic photon flux density (PPFD)  > 0 µmol 256 

m
-2 

s
-1

, and only data collected from the top third of the canopy (what would happen if you 257 

used data for PAR> 250 µmol m
-2 

s
-1

 rather than > 0? . Data points with negative 258 
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photosynthesis rates were excluded. In all cases, species were grown under ambient 259 

environmental conditions and were not subjected to any treatments, such as elevated CO2, 260 

temperature, or drought treatments. We employed an optimal stomatal model
1
 as:  261 

             
  

√ 
 
 

  
 

where D is vapour pressure deficit, A is net photosynthesis rate, Ca is CO2 concentrtion at 262 

leaf surface, and g0, g1 are model coefficients for intercept and slope. We used a non-linear 263 

mixed-effect model to estimate the model slope coefficient, g1, for each group separately 264 

for various classification schemes as shown in Fig. 2. In all g1 estimations, we assumed the 265 

intercept coefficient, g0, to be zero to avoid strong correlation between g0 and g1 which 266 

would mask any interesting variation in g1. In this model, individual species were assumed 267 

to be the random effect to account for the differences in the g1 slope among species within 268 

the same group. To test how g1 varies with climatic variables (i.e. MI and mGDD0), we 269 

first estimated g1 for each species using non-linear regression. We then used a linear 270 

mixed-effect model to test the relationship between g1, MI and mGDD0. We fitted the 271 

model as:  272 

                          

assuming PFTs as the random effect to account for the differences in intercept among PFTs. 273 

To evaluate the goodness of fit for linear mix-effect model, we calculated both the 274 

marginal R
2
 to quantify the proportion of variance explained by the fixed factors alone and 275 

the conditional R
2
 to quantify the proportion of variance explained by both the fixed and 276 

random factors as described in Nakagawa and Holger Schielzeth (2013)
28

. The relationship 277 

between g1 and wood density  were tested with a simple linear regression model. All model 278 

estimations and statistical analyses were performed within R 3.1.0
29

.   279 
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Table 1: Analysis of Variance table for g1 as a function of MI and mGDD0.  399 

 400 

  Model               

  Variables numDF denDF F-value   p-value Marginal R
2
 

 
  Intercept 1 97 67.08 < 0.001 0.20   

  MI 1 97 7.50   0.007 Conditional  R
2
   

  mGDD0 1 97 11.15   0.001 0.59   

  MI*mGDD0 1 97 1.34   0.250     
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Figure legends 401 

Figure 1: Climatic space covered by the Stomatal Behaviour Synthesis Database, shown 402 

as mean annual degree days above 0
o
C (mGDD0; 

o
C) and moisure index (MI). Coloured 403 

circles represent climatic space for the database, with different colours indicating different 404 

plant functional types. Grey hexagons represent global climatic space for which vegetation is 405 

present. The global climatic space data were binned by every 1 
o
C for mGDD0 and every 0.25 406 

for MI. 407 

 408 

Figure 2: Mean g1 values for plant functional types defined by different classification 409 

schemes. Each bar represents mean ± SE. Panels (b) (c) and (d) include C3 species data only. 410 

 411 

Figure 3: Relationship between g1 and wood density for angiosperm and gymnosperm 412 

trees. Savanna tree species (all angiosperms) are indicated separately. Each data point 413 

represents mean ±SE of g1 for individual species fitted with non-linear regression. A linear 414 

regression line was only fitted for angiosperm trees due to limited data for gymnosperm trees. 415 

The fitted linear regression relationship between g1 and wood density for angiosperm trees is: 416 

g1= -4.77*WD+ 6.96 (P = 0.0008, R
2
 = 0.23). Wood density data were obtained from Global 417 

Wood Density Database
23, 27

 and are avaible for 45 species in the Stomatal Behaviour Synthesis 418 

Database. 419 

Figure 4: Estimated and predicted g1 as a function of mGDD0 and MI. Panels (a) (b) show 420 

the relationship between estimated g1 and (a) mean annual degree days above 0
 o
C temperature 421 

(mGDD0; 
o
C) and (b) moisture index (MI) at experimental sites among species across different 422 

plant functional types (PFTs). Each data point represents mean ± SE of g1 for individual species 423 
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fitted with a non-linear regression. Classification of plant functional types are shown in Figure 424 

2e. Panels (c) and (d) are the predicted g1 under different ranges of  MI and mGDD0 presented 425 

as a partial regression plot. Predictions in (c) and (d) are from linear mixed-effects model for 426 

log(g1) assuming PFTs as a random effect to account for the differeces in intercept among PFTs. 427 

Colour lines represent the predicted g1 based on fitted model coefficients (Table S3). Colour 428 

dots represent the partial regression predictions at a given fixed MI or mGDD0 level.   429 
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Supplementary Materials   430 

Table S1: List of data source. 431 

Data contributor Location Species Reference 

Alexandre Bosc Le Bray, France Pinus pinaster Bosc, A. (1999) PhD Thesis. 

Alistair Rogers Barrow, AK, USA Several Arctic species Unpublished data. 

Ana Rey Glencorse near Edinburgh, Scotland, UK Betula pendula Rey & Jarvis (1998) Tree Physiology. 

Belinda Medlyn 

Tumbarumba flux tower, Snowy Mts, NSW, 

Australia Eucalyptus delegatensis Medlyn et al. (2007) Tree Physiology. 

Cate Macinnis-Ng Arataki Visitor Centre, Auckland, New Zealand Agathis australis Unpublished data 

Craig Barton Glencorse near Edinburgh Scotland Picea sitchensis Barton & Jarvis (1999) New Phytologist. 

David Ellsworth Duke Forest, Durham, NC, USA Pinus taeda 

Ellsworth DS (1999) Plant, Cell & 

Environment. 

David Ellsworth Richmond, Sydney, Australia Eucalyptus saligna Unpublished data 

David Ellsworth Richmond, Sydney, Australia Four Eucalyptus species 

Héroult et al. (2013) Plant, Cell & 

Environment. 

David Tissue Big Bend National Park, Texas, USA Larrea tridentata Ogle et al. (2012) 

Derek Eamus Palmerston, NT, Australia A set of six savanna tree species 

Thomas & Eamus (2002) Australian Journal of 

Botany. 

Derek Eamus Western Sydney, Castlereagh, Australia 

Angophora bakeri & Eucalyptus 

parramattensis 

Zeppel et al. (2008) Australian journal of 

botany. 

Harvard forest data archive Prospect Hill Tract, Harvard Forest, USA 

A set of four deciduous angiosperm tree 

species Bassow & Bazzaz (1997) Oecologia. 

Jean-Marc Limousin Sevilleta NWR, PJ rainfall manipulation, USA Juniperus monosperma & Pinus edulis 

Limousin et al. (2013) Plant, Cell & 

Environment. 

Jeff Kelly 

Daintree forest, Cape Tribulation, QLD, 

Australia A set of three tropical rainforest species Unpublished data 

Jeff Warren ORNL FACE, TN, USA Liqiudambar styraciflua Warren et al. (2011) Ecohydrology. 

Jesse Nippert Konza Prairie, KS, USA A set of C3 and C4 grassland species Unpublished data 

Joana Zaragoza-Castells, 

Patrick Meir &             

Owen Atkin French Guiana A set of tropical rainforest species Unpublished data 
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Joana Zaragoza-Castells, 

Patrick Meir &             

Owen Atkin Tambopata, Peru A set of tropical species Unpublished data 

Johan Uddling Rhinelander, WI, USA Betula papyrifera & Populus tremuloides Uddling et al (2009) Tree Physiology 

John Drake Duke Forest, Durham, NC, USA Pinus taeda Drake et al. (2011) Global Change Biology 

Jonathan Bennie Agoufou, Hombori, Mali A set of African savanna tree species Unpublished data 

David Tissue Narrabri, NSW, Australia Cotton Unpublished data 

Kohei Koyama & 

Kihachiro Kikuzawa Ishikawa, Japan Fagus crenata 

Koyama and Kikuzawa 2012 Ecological 

Research. 

Kouki Hikosaka Aobayama, Sendai, Japan  

A set of nine angiosperm and 

gymnosperm tree species Hikosaka and Shigeno (2009) Oecologia. 

Kouki Hikosaka TOEF, Tomakomai, Hokkaido, Japan Quercus crispula Hikosaka et al (2007) Tree Physiology. 

Lasse Tarvainen &      

Göran Wallin Skogaryd, Sweden Picea abies Tarvainen et al. (2013) Oecologia. 

Lindsay Hutley & 

Samantha Setterfield Wildman River, NT, Australia 

Alloteropsis semialata & Andropogon 

gayanus Unpublished data 

Lisa Wingate Aberfeldy, UK Picea sitchensis 

Wingate et al. (2007) Plant, Cell & 

Environment. 

Lucas Cernusak Howard Springs, NT, Australia A set of evergreen savanna tree species 

Cernusak et al. (2011) Agriculture & Forest 

Meteorology. 

Lucas Cernusak Daly River, NT, Australia A set of evergreen savanna tree species 

Cernusak et al. (2011) Agriculture & Forest 

Meteorology. 

Lucas Cernusak Dry River, NT, Australia A set of evergreen savanna tree species 

Cernusak et al. (2011) Agriculture & Forest 

Meteorology. 

Lucas Cernusak Adelaide River, NT, Australia A set of evergreen savanna tree species 

Cernusak et al. (2011) Agriculture & Forest 

Meteorology. 

Lucas Cernusak Sturt Plains, NT, Australia A set of evergreen savanna tree species 

Cernusak et al. (2011) Agriculture & Forest 

Meteorology. 

Lucas Cernusak Boulia, QLD, Australia A set of evergreen savanna tree species 

Cernusak et al. (2011) Agriculture & Forest 

Meteorology. 

Lucy Rowland &       

Patrick Meir Caxiuana, Brazil Manilkara spp. Unpublished data 

Maj-Lena Linderson & 

Teis Nørgaard Mikkelsen Soroe, Denmark Fagus sylvatica 

Linderson et al. (2012) Agriculture & Forest 

Meteorology 
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Mark Broadmeadow Headley S. London, UK Three Quercus species 

Broadmeadow et al. (1999) Water, Air and Soil 

Pollution. 

Markus Löw Kranzberg forest, Germany Fagus sylvatica 

Op de Beeck et al. (2010) Agriculture & Forest 

Meteorology. 

Michael Freeman Soroe, Denmark Fagus sylvatica Freeman, M. (1998) PhD Thesis. 

Nicolas Martin-StPaul Les Mages, France Quercus ilex 

Martin-StPaul et al. (2012) Functional Plant 

Biology. 

Nicolas Martin-StPaul Puechabon, France Quercus ilex 

Martin-StPaul et al. (2012) Functional Plant 

Biology. 

Nicolas Martin-StPaul Vic la Gardiole, France Quercus ilex 

Martin-StPaul et al. (2012) Functional Plant 

Biology. 

Oula Ghannoum 

Brian Pastures Res. Stn, Gayndah, QLD, 

Australia A set of C4 grasses Unpublished data 

Paolo de Angelis Montalto di Castro, Italy 

Phillyrea angustifolia, Pistacia lentiscus 

& Quercus ilex 

Scarascia-Mugnozza et al. (1996) Plant, Cell & 

Environment. 

Pasi Kolari Hyytiälä, Finland Pinus sylvestris Kolari et al. (2007) Tellus. 

Patrick Mitchell Corrigin Water Reserve, WA, Australia 

Eucalyptus capillosa & Eucalyptus 

salmonophloiia 

Mitchell et al. (2009) Agriculture & Forest 

Meteorology. 

Qingmin Han FFPRI, Tsukuba, Ibaraki, Japan Chamaecyparis obtusa Han et al. (2009) Journal of forest research. 

Qingmin Han Mt Fuji, Japan Pinus densiflora Han et al. (2003) Tree Physiology. 

Maarten Op de Beeck Tervuren, Belgium Brassica napus & Brassica oleracea 

Op de Beeck et al. (2010) Environmental 

Pollution. 

Sabine Tausz-Posch AGFACE facility, Horsham, VIC, Australia Triticum aestivum two varieties 

Tausz-Posch et al. (2013) Physiologia 

Plantarum. 

Teresa E. Gimeno Alto Tajo Natural Park, Guadalajara, Spain Juniperus thurifera Gimeno et al. (2012) Tree Physiology. 

Victor Resco de Dios Santa Rita Experimental Range, USA 

Eragrostis lehmanniana & Heteropogon 

contortus 

VRD et al. (2012) Prespectives in Plant 

Ecology, Evolution and Systematics. 

Wei Sun Charleston mesquite site, Tombstone, AZ, USA 

A set of mesquite C3 and C4 grass 

species Sun et al. (2009) Plant, Cell & Environment. 

Wei Sun San Pedro, Sierra Vista, AZ, USA A set of riparian C3 and C4 grass species Sun et al. (2010) Oecologia. 

Yusuke Onoda Hakkoda, Aomori, Japan 

Fagus crenata, Lindera umbellata & 

Magnolia salicifolia Yasumura et al. (2005) & Onoda unpublished. 

  432 
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Table S2: Estimates of g1 by different classification schemes. 433 

Classification 

scheme Class g1 mean g1 SE 

Number of 

data points 

Number of 

species  

a_Pathway C4 1.62 0.03 1161 38 

 

C3 4.16 0.01 14001 276 

b_Plantform Gymno. tree 2.35 0.02 4732 13 

 

shrub 3.32 0.05 689 15 

 

Angio. tree 3.97 0.02 6265 203 

 

Grass 5.25 0.13 304 20 

 

Savanna tree 5.76 0.22 339 20 

 

Crop 5.79 0.04 1672 5 

c_T region Arctic 2.22 0.07 162 8 

 

Boreal 2.19 0.02 917 5 

 

Temperate 4.31 0.02 11934 75 

 

Tropical 4.43 0.08 988 189 

d_W region MI < 0.5 3.77 0.03 3328 17 

 

0.5<MI<1.0 4.69 0.04 1673 45 

 

1.0<MI<1.5 3.87 0.03 4313 29 

 

MI<1.5 4.02 0.02 4687 186 

e_PFTs C4 grass 1.62 0.03 1161 38 

 

Ever. gymno. tree 2.35 0.02 4732 13 

 

Deci. savanna tree 2.98 0.39 30 2 

 

Shrub 3.32 0.05 689 15 

 

Ever. angio. tree 3.37 0.03 2828 17 

 

Trop. Rainforest tree 3.77 0.06 549 167 

 

Deci. angio. tree 4.64 0.04 2888 19 

 

C3 grass 5.25 0.13 304 20 

 

C3 crop 5.79 0.04 1672 5 

 

Ever. savanna tree 7.18 0.25 309 18 

  434 
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Table S3: Model coefficients for g1 as a function of MI and mGDD0. The model was fitted 435 

with a linear mixed-effects model as log(g1) ~MI+mGDD0+MI*mGDD0 using different PFTs 436 

as the random effects to account for the differences in intercept among PFTs. 437 

  Model           

  Variables mean SE DF     

  Intercept 0.449 0.289 97     

  MI 0.033 0.013 97     

  mGDD0 0.027 0.192 97     

  MI*mGDD0 0.014 0.012 97     

 438 

  439 
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Supplementary Figure legends 440 

Fig. S1: Climatic space covered by the Stomatal Behaviour Synthesis Database.  Shown as 441 

a combination of mean annual temperature (MAT; 
o
C ), mean annual precipitation (MAP; mm), 442 

mean annual degree days above 0
o
C (mGDD0; 

o
C) and moisure index (MI). 443 

 444 

Fig. S2. Residual plot by PFTs for the model: log(g1)~ MI+mGDD0+MI*mGDD0. The 445 

model was fitted using linear mix-effects model with PFTs as the random effect to account for 446 

the differences in intercept among PFTs.  447 

 448 

Fig. S3. predicted log(g1) as a function of mGDD0 and MI. (a) the predicted log(g1) under 449 

different ranges of  MI and mGDD0 presented as partial regression plot. Predictions are from 450 

linear mixed-effects model for log(g1) assuming PFTs as a random effect to account for the 451 

differences in intercept among PFTs. Colour lines represent the predicted g1 based on fitted 452 

model coefficients (Table S3). Colour dots represent the partial regression predictions at a 453 

given fixed MI or mGDD0 level. 454 

 455 

 456 
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