315 research outputs found
Dust and the spectral energy distribution of the OH/IR star OH 127.8+0.0: Evidence for circumstellar metallic iron
We present a fit to the spectral energy distribution of OH 127.8+0.0, a
typical asymptotic giant branch star with an optically thick circumstellar dust
shell. The fit to the dust spectrum is achieved using non-spherical grains
consisting of metallic iron, amorphous and crystalline silicates and water ice.
Previous similar attempts have not resulted in a satisfactory fit to the
observed spectral energy distributions, mainly because of an apparent lack of
opacity in the 3--8 micron region of the spectrum. Non-spherical metallic iron
grains provide an identification for the missing source of opacity in the
near-infrared. Using the derived dust composition, we have calculated spectra
for a range of mass-loss rates in order to perform a consistency check by
comparison with other evolved stars. The L-[12 micron] colours of these models
correctly predict the mass-loss rate of a sample of AGB stars, strengthening
our conclusion that the metallic iron grains dominate the near-infrared flux.
We discuss a formation mechanism for non-spherical metallic iron grains.Comment: 10 pages, 6 figures, accepted for publication by A&
The Spitzer Spectroscopic Survey of S-type Stars
S-type AGB stars are thought to be in the transitional phase between M-type
and C-type AGB stars. Because of their peculiar chemical composition, one may
expect a strong influence of the stellar C/O ratio on the molecular chemistry
and the mineralogy of the circumstellar dust. In this paper, we present a large
sample of 87 intrinsic galactic S-type AGB stars, observed at infrared
wavelengths with the Spitzer Space Telescope, and supplemented with
ground-based optical data. On the one hand, we derive the stellar parameters
from the optical spectroscopy and photometry, using a grid of model
atmospheres. On the other, we decompose the infrared spectra to quantify the
flux-contributions from the different dust species. Finally, we compare the
independently determined stellar parameters and dust properties. For the stars
without significant dust emission, we detect a strict relation between the
presence of SiS absorption in the Spitzer spectra and the C/O ratio of the
stellar atmosphere. These absorption bands can thus be used as an additional
diagnostic for the C/O ratio. For stars with significant dust emission, we
define three groups, based on the relative contribution of certain dust species
to the infrared flux. We find a strong link between group-membership and C/O
ratio. We show that these groups can be explained by assuming that the
dust-condensation can be cut short before silicates are produced, while the
remaining free atoms and molecules can then form the observed magnesium
sulfides or the carriers of the unidentified 13 and 20 micron features.
Finally, we present the detection of emission features attributed to molecules
and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons
and magnesium sulfide grains. We show that we often detect magnesium sulfides
together with molecular SiS and we propose that it is formed by a reaction of
SiS molecules with Mg.Comment: Accepted for publication in A&
Luminosities and mass-loss rates of SMC and LMC AGB stars and Red Supergiants
(Abridged) Dust radiative transfer models are presented for 101 carbon stars
and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 \mum\
{\it Spitzer} IRS spectra are available. The spectra are complemented with
available optical and infrared photometry to construct the spectral energy
distribution. A minimisation procedure is used to fit luminosity, mass-loss
rate and dust temperature at the inner radius. Different effective temperatures
and dust content are also considered. Periods from the literature and from new
OGLE-III data are compiled and derived. The O-rich stars are classified in
foreground objects, AGB stars and Red Super Giants.
For the O-rich stars silicates based on laboratory optical constants are
compared to "astronomical silicates". Overall, the grain type by Volk & Kwok
(1988) fit the data best. However, the fit based on laboratory optical
constants for the grains can be improved by abandoning the small-particle
limit. The influence of grain size, core-mantle grains and porosity are
explored.
Relations between mass-loss rates and luminosity and pulsation period are
presented and compared to the predictions of evolutionary models, those by
Vassiliadis & Wood (1993) and their adopted mass-loss recipe, and those based
on a Reimers mass-loss law with a scaling of a factor of five. The Vassiliadis
& Wood models describe the data better, although there are also some
deficiencies, in particular to the maximum adopted mass-loss rate.
The OGLE-III data reveal an O-rich star in the SMC with a period of 1749
days. Its absolute magnitude of makes it a good candidate
for a super-AGB star.Comment: A&A accepte
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Erythropoietin as candidate for supportive treatment of severe COVID-19
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly
Violent aggression predicted by multiple pre-adult environmental hits
Early exposure to negative environmental impact shapes individual behavior and potentially contributes to any mental disease. We reported previously that accumulated environmental risk markedly decreases age at schizophrenia onset. Follow-up of matched extreme group individuals (≤1 vs. ≥3 risks) unexpectedly revealed that high-risk subjects had >5 times greater probability of forensic hospitalization. In line with longstanding sociological theories, we hypothesized that risk accumulation before adulthood induces violent aggression and criminal conduct, independent of mental illness. We determined in 6 independent cohorts (4 schizophrenia and 2 general population samples) pre-adult risk exposure, comprising urbanicity, migration, physical and sexual abuse as primary, and cannabis or alcohol as secondary hits. All single hits by themselves were marginally associated with higher violent aggression. Most strikingly, however, their accumulation strongly predicted violent aggression (odds ratio 10.5). An epigenome-wide association scan to detect differential methylation of blood-derived DNA of selected extreme group individuals yielded overall negative results. Conversely, determination in peripheral blood mononuclear cells of histone-deacetylase1 mRNA as ‘umbrella mediator’ of epigenetic processes revealed an increase in the high-risk group, suggesting lasting epigenetic alterations. Together, we provide sound evidence of a disease-independent unfortunate relationship between well-defined pre-adult environmental hits and violent aggression, calling for more efficient prevention
Addressing the 'hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues
Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Main body of the abstract Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. Short conclusion Substitution of EPO may among other beneficial EPO effects in severe COVID-19 circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted
Pathogenic SCN2A variants cause early-stage dysfunction in patient-derived neurons
Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)], and compared them to neurons from an epileptic encephalopathy patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. By contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency, and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations
Genetic landscape of congenital insensitivity to pain and hereditary sensory and autonomic neuropathies
Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited.
Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign.
The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies
Vibration induced memory effects and switching in ac-driven molecular nanojunctions
We investigate bistability and memory effects in a molecular junction weakly
coupled to metallic leads with the latter being subject to an adiabatic
periodic change of the bias voltage. The system is described by a simple
Anderson-Holstein model and its dynamics is calculated via a master equation
approach. The controlled electrical switching between the many-body states of
the system is achieved due to polaron shift and Franck-Condon blockade in the
presence of strong electron-vibron interaction. Particular emphasis is given to
the role played by the excited vibronic states in the bistability and
hysteretic switching dynamics as a function of the voltage sweeping rates. In
general, both the occupation probabilities of the vibronic states and the
associated vibron energy show hysteretic behaviour for driving frequencies in a
range set by the minimum and maximum lifetimes of the system. The consequences
on the transport properties for various driving frequencies and in the limit of
DC-bias are also investigated.Comment: 15 pages, 20 figures, published versio
- …
