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Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and 

genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due 

to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about 

these disorders is limited.

Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients 

from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic 

variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of 

disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such 

as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger 

deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to  
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overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-re-

lated or benign.

The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This 

is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment 

strategies.
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Introduction

Complex genetic variability leads to individual differences in the 

perception of pain. In contrast to polygenic and environmental 

correlations, specific single nucleotide variants can have an effect 

such that the sensation of pain is absent from birth, or a progres-

sive loss of pain sensitivity becomes apparent in the course of 

life. In these rare and monogenic diseases, there is usually a de-

velopmental disorder of pain-sensing neurons, neurodegenera-

tion of peripheral nerves, or altered electrical activity of 

nociceptors. This heterogeneous group of genetic pain loss disor-

ders includes congenital insensitivity to pain (CIP), hereditary 

sensory neuropathy (HSN) and, if autonomic nerves are involved, 

hereditary sensory and autonomic neuropathy (HSAN). The HSNs 

are assigned here to the group of HSAN diseases. The conse-

quences of pain loss are recurrent injuries and fractures resulting 

in mutilation or amputation, often in combination with severely 

impaired wound healing. The sensation of itch, temperature 

and touch may also be impaired with negative impact on health. 

Affected patients can have marked autonomic dysfunction, such 

as anhidrosis, gastrointestinal and sexual dysfunction or blood 

pressure fluctuations. In some subtypes of CIP/HSAN, patients 

also show intellectual disability, muscle weakness, ataxia or 

other additional symptoms. To date, pathogenic variants in 

more than 20 genes are known to cause pain loss syndromes. 

Various cellular processes can be affected, including sodium 

channel activity,1,2 sphingolipid metabolism,3,4 membrane dy-

namics,5–7 axonal transport,8,9 neurotrophin signalling,10,11 epi-

genetic regulation12 or cytoskeletal architecture.13 Because of 

the rarity of CIP/HSAN disorders, knowledge of these conditions 

is limited and diagnosis is often delayed or incorrect resulting 

in a diagnostic odyssey. Moreover, except for few studies includ-

ing larger patient numbers,14,15 the literature is often restricted to 

single case descriptions. Detailed studies on the genetic spectrum 

of the respective molecular subtypes have been largely lacking to 

date, but as the first therapeutic approaches for certain subtypes 

are in clinical trials, molecular classification is becoming increas-

ingly important.16–18

In this retrospective study, we provide deeper insights into the 

clinical and genetic landscape of these rare conditions by sequen-

cing of the as yet largest cohort of CIP/HSAN patients.

Materials and methods

Patient cohort

Genetic data were collected retrospectively from existing datasets 

from patients who had been either referred directly to the 

4882 | BRAIN 2023: 146; 4880–4890                                                                                                                           A. Lischka et al.

mailto:ikurth@ukaachen.de


participating centres or whose blood samples and clinical informa-

tion were sent to the participating centres. All patients showed clin-

ical signs of HSAN or CIP (i.e. reduced sensation of pain, temperature 

and touch either congenital or developed later in life and/or clinical 

manifestations such as unnoticed injuries, skin ulcerations, amputa-

tions, osteomyelitis, painless fractures). Since neuropathic pain, es-

pecially in the initial stage, may be a sign of different forms of 

HSAN, patients with a combined phenotype and a variant in one of 

the HSAN-related genes were also included in the study. Patients 

with suspected other genetic disorders potentially mimicking the 

phenotype of HSAN, such as Charcot-Marie-Tooth disease (CMT) or 

e.g. Lesch-Nyhan syndrome as a typical example with self-mutilating 

behaviour, were not included in the study. Other possible underlying 

non-genetic causes of decreased pain sensitivity (e.g. toxic, metabolic 

or infectious causes of polyneuropathy) were queried by the respect-

ive clinical centres and resulted in exclusion from the study. The 

study was conducted in accordance with the Declaration of 

Helsinki and has been approved by the local ethics committees of 

the participating institutions. Prior to inclusion, written informed 

consent was obtained from patients or their legal guardians [Ethics 

approval Uniklinik RWTH Aachen: EK 086-20; Ethics approval 

London: 09/H0716/61 (‘CMT—A natural history study’); Ethics ap-

provals University of Oxford: 12/LO/0017 (Painful Channelopathies 

Study, https://clinicaltrials.gov/ct2/show/NCT02696746), 18/SC/0263 

(Pain in Peripheral Nerve Lesions), 13/EE/0325 (NIHR BioResource— 

Rare Diseases; Ethics approval of Antwerp and University Hospital 

of Antwerp: B300201422160 (V.T.) and B300201525715 (J.B.); Ethics ap-

proval University Hospital of Tübingen: 116/2015BO2].

Short-read next-generation sequencing

Project sites and collaborating research institutions provided genetic 

data of CIP/HSAN patients that had been analysed by short-read 

sequencing. Datasets were analysed with regard to novel variants 

in known CIP/HSAN genes [genes from the panel ‘pain syndromes’ 

v1.12, Genomics England Panel App were prioritized (https:// 

panelapp.genomicsengland.co.uk/panels/288/)]. Variant calling was 

done by each research institute separately; protocols, consumables 

and pipelines used differed between the institutions. Detailed proto-

cols can be provided upon request. Cases were considered if mono- or 

biallelic variants (for dominant and recessive disorders, respectively) 

were found in one of the core genes with no additional probably 

disease-associated variants detected by screening of the datasets. 

The MasterMind database was checked in June 2023 and variants 

were included if they (i) had not been published in the literature at 

all; (ii) had only been described in supplementary materials; or (iii) 

had only been reported in patients with a phenotype other than 

CIP/HSAN (Supplementary Table 1). If possible, segregation analyses 

within the families were performed using Sanger sequencing.

Modified classification of pathogenicity

In accordance with the American College of Medical Genetics 

(ACMG) criteria,19 in a first step, only pathogenic or likely pathogen-

ic variants were selected consistent with a very high probability of 

molecular diagnostic confirmation (Table 1). Subsequently, var-

iants with formally unclear clinical significance (VUS) in the core 

genes were reassessed (Table 2). For this purpose, five additional 

objective criteria were established to cover variant features that 

support the pathogenicity of a variant but are not represented in 

the actual ACMG guidelines so far. Two novel criteria were classi-

fied as moderate and three as supporting (Supplementary 

Table 2). Additionally, we established the term of VUS+, defined 

as variants that do not meet the original criteria for likely pathogen-

ic or pathogenic variants but fulfil at least one of the new criteria 

supporting their pathogenicity.

Additional methods

Detailed information about long-read next-generation sequencing 

(NGS), sphingolipid profiling and electrophysiology is provided in 

the Supplementary material.

Results

The cohort studied was composed of patients who presented at the 

participating centres or whose findings were referred from periph-

eral hospitals or treating physicians. The inclusion of patients from 

countries or regions with limited resources led to variable availabil-

ity of clinical information (Supplementary Fig. 1). Inclusion criteria 

for the genetic test were the suspicion of CIP/HSAN due to a de-

creasing or absent pain sensation and written consent to partici-

pate in the study. Cases were excluded if a secondary cause of 

insensitivity to pain such as leprosy or abusive injury was con-

firmed or suspected. The predefined inclusion and exclusion cri-

teria are detailed in the ‘Materials and methods’ section. A cohort 

of 78 patients from 73 families with the suspected diagnosis of 

CIP/HSAN had been analysed by NGS using gene panels, whole 

exome (WES) or whole genome sequencing (WGS). The core genes 

included in the analysis were the following 22 genes: ATL1, ATL3, 

DST, ELP1, GLA, KIF1A, NGF, NTRK1, PRDM12, RAB7A, RETREG1/ 

FAM134B, SCN9A, SCN11A, SPTLC1, SPTLC2, TTR, WNK1, MPV17, 

NAGLU, CLTCL1, FAAHP1 and FLVCR1.

By applying the ACMG criteria and our additional criteria for 

pathogenicity, 80 novel CIP/HSAN-related variants were identified 

in 78 patients (Tables 1 and 2 and Supplementary Table 3). 

Complete clinical and genetic details are given in Supplementary 

Table 1 and clinical images for a subset of patients are shown in 

Fig. 1. In some patients with recessive conditions, the novel variant 

occurred in compound heterozygosity with a second, previously 

described pathogenic or likely pathogenic variant as indicated in 

Tables 1 and 2. The mutation spectrum across all genes included 

missense variants, non-frameshift variants, frameshift variants 

and stop-gains whereby for some genes, exclusively one mutation 

type was found (e.g. missense variants in SPTLC1 and SPTLC2) 

(Fig. 2). For most genes, no mutational hot spot was identified and 

the variants showed a distribution pattern across the entire coding 

regions, for some genes also including adjacent splice sites. An ex-

ception was the WNK1 gene, for which a known clustering of var-

iants was confirmed in the HSN2 exon known to code for part of 

the neuron-specific isoform. One of these variants, however, af-

fected the pan-isoform of WNK1 in compound heterozygosity 

with an HSN2-specific variant.

Novel CIP/HSAN-related variants were identified in 12 different 

CIP/HSAN genes, namely in ATL3 (n = 3), DST (n = 2), KIF1A (n = 1), 

NGF (n = 2), NTRK1 (n = 21), PRDM12 (n = 3), RAB7A (n = 2), SCN9A 

(n = 22), SPTLC1 (n = 2), SPTLC2 (n = 8), WNK1 (n = 6) and FLVCR1 

(n = 6) (Supplementary Fig. 2), where ‘n’ corresponds to the number 

of patients per gene.

Genomic data revealed a larger intragenic deletion of 1.3 kb 

(Patient 35) in NTRK1 and two larger intragenic deletions of 

3.8 kb (Patient 60) and 3.4 kb (Patient 61) in SCN9A, respectively. 

Patient 62 showed a 322 kb deletion spanning the entire SCN9A lo-

cus. In these patients, the deletion was in a compound 
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Table 1 Novel (likely) pathogenic variants in CIP/HSAN genes

Patient Novel variant Genotype ACMG Inh. PP Au Mo SL F/M ID

DST (NM_001374736)
4 c.4849C>T, p.(Arg1617*) het + c.19942G>A (het) LPV AR red − + + −

5 c.22513C>T, p.(Arg7505*) comp + c.19451A>T LPV AR red + + + + −

FLVCR1 (NM_014053)
6 c.139_151del, p.(Phe47Glyfs*62) het + c.722C>T (het) LPV AR red − + − + +

7 c.868_871del, p.(Ile290*) comp + c.655G>A LPV AR abs + − − −

10 c.1318_1321del, p.(Thr440Valfs*63) comp + c.1317G>A LPV AR red + −

11 c.1194C>A, p.(Tyr398*) comp + c.1526-3C>T LPV AR abs − + + −

KIF1A (NM_001244008)
12 c.2839dup, p.(Leu947Profs*49) hom° LPV AR red + − − −

NGF (NM_002506)
13 c.524_525del, p.(Phe175*) hom° LPV AR red + + +

14 c.695_696del, p.(Val232Alafs*39) hom° LPV AR + + + +

NTRK1 (NM_002529)
15 c.2T>A, p.(Met1?) hom LPV AR *

16 c.145C>T, p.(Arg49*) hom° LPV AR abs + − + +

17 c.213-1G>A, p.? hom° LPV AR abs +

18 c.228_229delGCinsTT, p.(Gln76_Gln77delinsHis*) hom LPV AR *

19 c.287+2T>A, p.? comp + known LPV LPV AR *

22, 23 c.605del, p.(Asn202Metfs*37) het + known PV (het) LPV AR red + − + + +

24 c.717+1del, p.? hom LPV AR *

27 c.850del, p.(Phe284Serfs*186) hom LPV AR *

28 c.851-2A>G, p.? hom° LPV AR *

30 c.1320del, p.(Asn440Lysfs*30) hom LPV AR abs +

32, 33 c.1865del, p.(Leu622Argfs*36) hom° LPV AR red + − + + −

34 c.1953_1954insT, p.(Ala652Cysfs*17) hom LPV AR *

PRDM12 (NM_021619)
37 c.575T>A, p.(Ile192Asn) hom° LPV AR abs − − + +

38 c.788G>A, p.(Arg263His) comp + known LPV LPV AR abs + −

SCN9A (NM_002977)
41 c.116del, p.(Lys39Argfs*51) hom LPV AR *

42 c.515T>G, p.(Leu172Arg) hom° LPV AR abs + − + −

43 c.793C>T, p.(Gln265*) hom LPV AR *

44 c.809_822del, p.(Asn270Metfs*7) comp + c.1927C>T LPV AR *

45 c.954_955del, p.(Thr319Argfs*19) hom LPV AR *

46 c.1368del, p.(Gly457Alafs*12) hom LPV AR *

47 c.1449del, p.(Asn484Ilefs*81) comp + known PV PV AR *

48 c.1602+2del, p.? comp + known LPV LPV AR abs

44 c.1927C>T, p.(Gln643*) comp + c.809_822del LPV AR *

50 c.2109G>A, p.(Trp703*) comp + known PV PV AR *

51, 52 c.2362dup, p.(Asp788Glyfs*4) hom° LPV AR red − − + + −

54 c.3309del, p.(Tyr1103*) comp + c.5340del LPV AR abs − − + −

55 c.4331del, p.(Val1444Alafs*3) hom LPV AR red − − + − −

56 c.4467del, p.(Asn1491Thrfs*10) hom° LPV AR *

57 c.4470+1G>T, p.? comp + known PV PV AR *

59 c.5118del, p.(Val1709Phefs*33) hom LPV AR *

54 c.5340del, p.(Asp1781Metfs*6) comp + c.3309del LPV AR abs − − + −

SPTLC1 (NM_006415)
63 c.397T>C, p.(Cys133Arg) het LPV AD *

WNK1 (NM_001184985)
73 c.2159del, p.(Pro720Argfs*35) hom° LPV AR red − + + −

74, 75 c.2392_2416del, p.(Ala798Profs*4) hom LPV AR red − − + + −

76 c.2919_2920dup, p.(Pro974Hisfs*27) hom° LPV AR red − + + + −

77 c.3071_3072del, p.(Asn1024Ilefs*28) hom LPV AR red + + −

78 c.3909_3928del, p.(Gln1304Serfs*31) comp + known PV PV AR red +

abs = absent (i.e. complete pain loss), ACMG = American College of Medical Genetics; AD = autosomal dominant; AR = autosomal recessive; Au = autonomic dysfunction; comp =  

compound heterozygosity, confirmed by segregation analyses; F/M = fractures and/or mutilations; het = heterozygous; hom = homozygosity, confirmed by segregation analyses; 

hom° = homozygosity, but no parental samples available for segregation analyses; Inh. = inheritance; ID = intellectual disability; LPV = likely pathogenic variant; Mo = motor 

dysfunction; red = reduced; PP = pain perception; PV = pathogenic variant; SL = skin lesions (including ulcerations). 

*Suspected clinical diagnosis of HSAN, no further clinical information available. For clinical data, ‘+’ indicates the presence and ‘–’ the absence of symptoms in the respective 

category.
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heterozygous situation with a single nucleotide variant on the 

other allele. For the 3.4 kb deletion (Patient 61) spanning exon 20 

of SCN9A, the DNA quality was sufficient to determine the exact 

size of the maternally inherited deletion by long-read sequencing 

(Oxford Nanopore Technologies, ONT) (Supplementary Fig. 3A). 

The deletion had a size of 3421 bp [chr2:166,235,764-166,239,185 

(hg38)] and was further confirmed by quantitative PCR (qPCR) 

(Supplementary Fig. 3B). The father is a carrier of the single base 

pair deletion c.5318del, confirming compound heterozygosity in 

the index patient. For eight patients carrying SPTLC1 and SPTLC2 

variants, plasma samples were available and 1-deoxy- 

sphingolipids (1-deoxySL) levels were elevated in line with as-

sumed pathogenicity of the variant (Patients 63–68 and Patients 

71–72) (Supplementary Fig. 4). For the homozygous missense vari-

ant p.(Leu172Arg) in Nav1.7 (SCN9A) in transmembrane segment 2 

of channel domain I (D1), in silico predictions regarding a role in 

CIP were inconsistent, so functional studies were performed 

(Patient 42). The respective variant was electrophysiologically 

analysed upon heterologous expression in HEK293 cells and 

showed a complete loss-of-function in line with pathogenicity 

(Supplementary Fig. 5).

Discussion

This retrospective cross-sectional study was aimed at molecular 

characterization of patients with CIP/HSAN and to our knowledge, 

includes the largest number of molecularly resolved cases to date. 

The study has its main limitation in that in some cases the inclu-

sion criteria were met, but detailed clinical data were not available. 

This was because data were collected from multiple sites, some 

with only limited clinical research and documentation capabilities. 

This is a frequently observed difficulty in ultrarare diseases, as 

Table 2 Novel variants in CIP/HSAN genes classified as likely pathogenic or VUS+ after reclassification

Patient Novel variant Genotype ACMG Reclass. Inh. PP Au Mo SL F/M ID

ATL3 (NM_015459)
1 c.544G>A, p.(Asp182Asn) het VUS VUS+ AD NP + + + −

2 c.1027A>G, p.(Met343Val) het VUS VUS+ AD red −

3 c.1053C>A, p.(Asn351Lys) het VUS VUS+ AD red + + + −

DST (NM_001374736)
5 c.19451A>T, p.(Gln6484Leu) comp + c.22513C>T VUS LPV AR red + + + + −

4 c.19942G>A, p.(Val6648Ile) het + c.4849C>T (het) VUS VUS+ AR red − + + −

FLVCR1 (NM_014053)
7 c.655G>A, p.(Gly219Ser) comp + c.868_871del VUS LPV AR abs + − − −

6 c.722C>T, p.(Ala241Val) het + c.139_151del (het) VUS VUS+ AR red − + − + +

8 c.758T>A, p.(Phe253Tyr) het + c.1369G>A (het) VUS LPV AR abs + +

9 c.1034C>G, p.(Thr345Ser) hom° VUS VUS+ AR red + + +

10 c.1317G>A, p.(Met439Ile) comp + c.1318_1321del VUS LPV AR red + −

8 c.1369G>A, p.(Glu457Lys) het + c.758T>A (het) VUS VUS+ AR abs + +

11 c.1526-3C>T, p.? comp + c.1194C>A VUS VUS+ AR abs − + + −

NTRK1 (NM_002529)
20, 21 c.287+5G>A, p.? hom VUS VUS+ AR abs + + +

25, 26 c.717+4A>T, p.? comp + known PV/LPV VUS LPV AR *

29 c.1136T>A, p.(Met379Lys) hom VUS LPV AR red + + + + +

31 c.1514T>A, p.(Ile505Asn) hom VUS VUS+ AR *

PRDM12 (NM_021619)
36 c.131_139del, p.(Val44_Gly46del) hom VUS LPV AR red +

RAB7A (NM_004637)
39, 40 c.467C>T, p.(Ala156Val) het VUS VUS+ AD red + − + −

SCN9A (NM_002977)
49 c.1650C>G, p.(Ser550Arg) comp + c.1660C>A VUS VUS+ AR *

49 c.1660C>A, p.(Leu554Ile) comp + c.1650C>G VUS VUS+ AR *

53 c.2689_2691del, p.(Trp897del) hom° VUS LPV AR *

58 c.5059G>C, p.(Ala1687Pro) comp + known PV VUS LPV AR *

SPTLC1 (NM_006415)
64 c.1037C>T, p.(Ala346Val) het VUS VUS+ AD *

SPTLC2 (NM_004863)
65 c.302A>G, p.(His101Arg) het VUS VUS+ AD *

66 c.359A>G, p.(Asn120Ser) het VUS VUS+ AD *

67 c.430G>A, p.(Ala144Thr) het VUS VUS+ AD *

68 c.707G>T, p.(Gly236Val) het VUS VUS+ AD *

69, 70 c.1276A>T, p.(Ile426Phe) het VUS VUS+ AD NP + + − − −

71 c.1304G>T, p.(Gly435Val) het VUS VUS+ AD *

72 c.1513G>A, p.(Glu505Lys) het VUS VUS+ AD red + + + −

abs = absent (i.e. complete pain loss); AD = autosomal dominant; AR = autosomal recessive; Au = autonomic dysfunction; comp = compound heterozygosity, confirmed by 

segregation analyses; F/M = fractures and/or mutilations; het = heterozygous; hom = homozygosity, confirmed by segregation analyses; hom° = homozygosity, but no parental 

samples available for segregation analyses; Inh. = inheritance; ID = intellectual disability; LPV = likely pathogenic variant; Mo = motor dysfunction; NP = neuropathic pain; red =  

reduced; PP = pain perception; PV = pathogenic variant; Reclass. = reclassification; SL = skin lesions (including ulcerations); VUS = variant of uncertain significance. 

*Suspected clinical diagnosis of HSAN, no further clinical information available. For clinical data, ‘+’ indicates the presence and ‘–’ the absence of symptoms in the respective 

category.
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access to patients is already a major hurdle. In addition, the total 

number of cases investigated at each centre over the years is vari-

able, making it difficult to accurately determine detection rates 

for CIP/HSAN. The strength and focus of this study were therefore 

on molecular characterization and careful assessment of the 

pathogenicity of variants in CIP/HSAN-associated genes. Thus, a 

large cohort of patients with these extremely rare diseases could 

be studied in a collaborative network and patients from normally 

under-represented countries could also be included.

Overall, the study supports that SCN9A and NTRK1 are the most 

frequently mutated genes in congenital painlessness. Whereas CIP/ 

HSAN-related pathogenic SCN9A variants frequently lead to anos-

mia as a secondary symptom, NTRK1-related neuropathy is accom-

panied by lack of sweat gland innervation with anhidrosis and 

sometimes life-threatening hyperthermia. Intellectual disability 

was not observed in SCN9A-associated neuropathy and was pre-

sent with a variable degree in NTRK1-related disease. In adult onset 

HSN/HSAN, pathogenic variants are most frequently found in the 

enzymes of the sphingolipid metabolism pathway (SPTLC1/2). The 

study has a bias at this point: previously, more pathogenic variants 

were described for SPTLC1 than for SPTLC2. We report more cases 

with SPTLC2 variants in this study, but this is due to the fact that 

Figure 1 Phenotypic findings in CIP/HSAN patients. The pictures show exemplary findings in patients with novel (likely) pathogenic variants in DST 
(Patient 5), NTRK1 (Patients 22, 23 and 33), SCN9A (Patient 55), SPTLC2 (Patient 69), and WNK1 (Patient 74). Additional clinical details are provided in 
Supplementary Table 1. Number sign indicates patient ID.
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Figure 2 Novel variants in known CIP/HSAN genes. The location within the respective genes is shown for all variants identified in this study. Green =  

missense/non-frameshift; yellow = splicing; red = truncating. For WNK1, the neuron-specific exon HSN2 is highlighted, in which the majority of the 
known pathogenic variants (to date) is located.
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we solely report new disease-relevant variants. In the UK, for ex-

ample, there is a high frequency of SPTLC1-related patients due to 

the p.(Cys133Trp) founder mutation.

In addition, to address these more frequently mutated genes, 

we were able to substantiate the role of genes that have so far 

only very rarely been described as the cause of CIP/HSAN. To 

date, only three causal variants have been reported in NGF, two of 

which are missense variants.10,20,21 The study expands the muta-

tion spectrum to include two homozygous loss-of-function var-

iants and further corroborates a clinical presentation broadly 

equivalent to that of pathogenic variants in the NGF receptor en-

coding gene, NTRK1.

For ATL3, only two causal missense variants have been de-

scribed to date.6,22 As for the previous changes, the here identified 

heterozygous variants are missense changes located at very highly 

conserved residues of the protein. The data further support that a 

dominant-negative effect of missense variants is likely the central 

mechanism of ATL3-associated disease. A recent report of an early 

stop-gain variant in ATL3, p.(Arg6Ter)23 would argue against this as-

sumption, but proof of pathogenicity of this variant is pending. 

FLVCR1 variants have predominantly been reported in cases of 

autosomal-recessive posterior column ataxia with retinitis pig-

mentosa (PCARP).24 Since the first description of FLVCR1 variants 

as cause of HSAN, only a few pathogenic variants have been re-

ported, including missense and loss-of-function variants.25–27 The 

findings in this study based on six additional patients show that 

the clinical transitions between PCARP and HSAN are fluid and of-

ten result in a complex phenotype with overlapping symptoms.

In several patients, the underlying genetic variants are immedi-

ately classifiable as likely pathogenic or pathogenic according to 

ACMG criteria. A greater difficulty arises with missense variants 

that often have to be classified as VUS. Here, further parameters 

such as homozygosity/compound heterozygosity with a likely 

pathogenic or very rare variant for recessive disorders, occurrence 

in more than one affected individual, a highly specific phenotype, 

detailed evaluation of the functionally critical domains and amino 

acids of the protein, or the lack of evidence of another genetic cause 

by broad genetic screening using WES or WGS were used to prove 

the pathogenicity of the suspicious variants. For all variants listed 

in this study, those that were formally classified as VUS according 

to ACMG criteria were considered as VUS+ (i.e. assumed to be likely 

pathogenic) or likely pathogenic based on such additional criteria. 

This critical review of variants was performed to exclude false po-

sitives as much as possible and to provide reliable genetic counsel-

ling to patients and their families.

Further functional assessment of VUS in SPTLC1 or SPTLC2 was 

achieved by detecting toxic sphingolipid species in the serum of pa-

tients by mass spectrometry. Both genes encode key enzymes of 

the de novo sphingolipid synthesis pathway, the so-called serine 

palmitoyltransferases (SPT). Pathogenic gain-of-function variants 

in SPTLC1 and SPTLC2 lead to the increased formation of toxic 

1-deoxySL, which have been measured in patient’s plasma to fur-

ther assess suspicious VUS. Heterologous expression studies with 

functional measures were additionally performed in selected cases 

to corroborate pathogenicity of a VUS. As an additional example, 

we show whole-cell voltage-clamp recordings of HEK293 cells tran-

siently expressing the SCN9A missense variant p.(Leu172Arg), con-

firming a complete loss-of-function of this variant.

The analysis of larger deletions has long been a difficulty in 

NGS-based diagnostics, but with increasingly better bioinformatic 

algorithms and new sequencing methods, this type of genetic alter-

ation can more frequently be detected in CIP/HSAN. In rare cases, 

large deletions in NTRK1 have already been reported in HSAN.28

Our results show another case of an NTRK1 deletion and, in add-

ition, three patients with larger deletions in SCN9A confirming their 

expected relevance in CIP/HSAN. Determination of copy number 

variants (CNV) from genomic data is therefore generally recom-

mended in the case of an underlying loss-of-function mechanism. 

Long-read sequencing technologies, such as nanopore sequencing, 

have proven useful for rapidly determining the size and position of 

deletions with base pair precision,29 as we also exemplify in a case 

of a 3.4 kb SCN9A deletion.

Another feature in CIP/HSAN concerns isoform-specific patho-

genic variants. HSAN-relevant recessive variants in WNK1 cluster 

in a neuron-specific alternatively spliced exon (HSN2 exon) of the 

gene, whereas biallelic pan-WNK1 loss is most likely lethal. We re-

port here one of the rare cases of a compound heterozygosity for a 

mutation in the neuron-specific exon in trans with a 

loss-of-function mutation affecting the pan-isoform of WNK1, simi-

larly to a previous report.30

In conclusion, our results broaden the mutational spectrum of 

CIP/HSAN and the cohort provides a framework for natural history 

studies and improvement of care in these rare debilitating 

conditions.
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