91 research outputs found

    Latent Structures based-Multivariate Statistical Process Control: a paradigm shift

    Full text link
    The basic fundamentals of statistical process control (SPC) were proposed by Walter Shewhart for data-starved production environments typical in the 1920s and 1930s. In the 21st century, the traditional scarcity of data has given way to a data-rich environment typical of highly automated and computerized modern processes. These data often exhibit high correlation, rank deficiency, low signal-to-noise ratio, multistage and multiway structures, and missing values. Conventional univariate and multivariate SPC techniques are not suitable in these environments. This article discusses the paradigm shift to which those working in the quality improvement field should pay keen attention. We advocate the use of latent structure based multivariate statistical process control methods as efficient quality improvement tools in these massive data contexts. This is a strategic issue for industrial success in the tremendously competitive global market.This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02.Ferrer, A. (2014). Latent Structures based-Multivariate Statistical Process Control: a paradigm shift. Quality Engineering. 26(1):72-91. https://doi.org/10.1080/08982112.2013.846093S7291261Aparisi, F., Jabaioyes, J., & Carrion, A. (1999). Statistical properties of the lsi multivariate control chart. Communications in Statistics - Theory and Methods, 28(11), 2671-2686. doi:10.1080/03610929908832445Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829Bharati, M. H., & MacGregor, J. F. (1998). Multivariate Image Analysis for Real-Time Process Monitoring and Control. Industrial & Engineering Chemistry Research, 37(12), 4715-4724. doi:10.1021/ie980334lBharati, M. H., MacGregor, J. F., & Tropper, W. (2003). Softwood Lumber Grading through On-line Multivariate Image Analysis Techniques. Industrial & Engineering Chemistry Research, 42(21), 5345-5353. doi:10.1021/ie0210560Bisgaard, S. (2012). The Future of Quality Technology: From a Manufacturing to a Knowledge Economy & From Defects to Innovations. Quality Engineering, 24(1), 30-36. doi:10.1080/08982112.2011.627010Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290-302. doi:10.1214/aoms/1177728786Camacho, J., & Ferrer, A. (2012). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics, 26(7), 361-373. doi:10.1002/cem.2440Duchesne, C., Liu, J. J., & MacGregor, J. F. (2012). Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, 117, 116-128. doi:10.1016/j.chemolab.2012.04.003Efron, B., & Gong, G. (1983). A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. The American Statistician, 37(1), 36-48. doi:10.1080/00031305.1983.10483087Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304Fuchs, C. (1998). Multivariate Quality Control. doi:10.1201/9781482273731Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9Helland, I. S. (1988). On the structure of partial least squares regression. Communications in Statistics - Simulation and Computation, 17(2), 581-607. doi:10.1080/03610918808812681Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4), 203-210. doi:10.1080/00224065.1986.11979014Edward Jackson, J. (1985). Multivariate quality control. Communications in Statistics - Theory and Methods, 14(11), 2657-2688. doi:10.1080/03610928508829069Jackson, J. E., & Mudholkar, G. S. (1979). Control Procedures for Residuals Associated With Principal Component Analysis. Technometrics, 21(3), 341-349. doi:10.1080/00401706.1979.10489779Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859Kourti, T. (2006). Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis. Critical Reviews in Analytical Chemistry, 36(3-4), 257-278. doi:10.1080/10408340600969957Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699Liu, R. Y. (1995). Control Charts for Multivariate Processes. Journal of the American Statistical Association, 90(432), 1380-1387. doi:10.1080/01621459.1995.10476643Liu, R. Y., Singh, K., & Teng*, J. H. (2004). DDMA-charts: Nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), 235-258. doi:10.1007/s101820400170Liu, R. Y., & Tang, J. (1996). Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods. Journal of the American Statistical Association, 91(436), 1694-1700. doi:10.1080/01621459.1996.10476740LOWRY, C. A., & MONTGOMERY, D. C. (1995). A review of multivariate control charts. IIE Transactions, 27(6), 800-810. doi:10.1080/07408179508936797MacGregor, J. F. (1997). Using On-Line Process Data to Improve Quality: Challenges for Statisticians. International Statistical Review, 65(3), 309-323. doi:10.1111/j.1751-5823.1997.tb00311.xMason, R. L., Champ, C. W., Tracy, N. D., Wierda, S. J., & Young, J. C. (1997). Assessment of Multivariate Process Control Techniques. Journal of Quality Technology, 29(2), 140-143. doi:10.1080/00224065.1997.11979743Montgomery, D. C., & Woodall, W. H. (1997). A Discussion on Statistically-Based Process Monitoring and Control. Journal of Quality Technology, 29(2), 121-121. doi:10.1080/00224065.1997.11979738Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-xNomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002Prats-Montalbán, J. M., Ferrer, A., Malo, J. L., & Gorbeña, J. (2006). A comparison of different discriminant analysis techniques in a steel industry welding process. Chemometrics and Intelligent Laboratory Systems, 80(1), 109-119. doi:10.1016/j.chemolab.2005.08.005Prats-Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1-2), 10-23. doi:10.1002/cem.1026Bisgaard, S., Doganaksoy, N., Fisher, N., Gunter, B., Hahn, G., Keller-McNulty, S., … Wu, C. F. J. (2008). The Future of Industrial Statistics: A Panel Discussion. Technometrics, 50(2), 103-127. doi:10.1198/004017008000000136Stoumbos, Z. G., Reynolds, M. R., Ryan, T. P., & Woodall, W. H. (2000). The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 95(451), 992-998. doi:10.1080/01621459.2000.10474292Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate Control Charts for Individual Observations. Journal of Quality Technology, 24(2), 88-95. doi:10.1080/00224065.1992.12015232Wierda, S. J. (1994). Multivariate statistical process control—recent results and directions for future research. Statistica Neerlandica, 48(2), 147-168. doi:10.1111/j.1467-9574.1994.tb01439.xWold, S. (1978). Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics, 20(4), 397-405. doi:10.1080/00401706.1978.10489693Woodall, W. H. (2000). Controversies and Contradictions in Statistical Process Control. Journal of Quality Technology, 32(4), 341-350. doi:10.1080/00224065.2000.11980013Woodall, W. H., & Montgomery, D. C. (1999). Research Issues and Ideas in Statistical Process Control. Journal of Quality Technology, 31(4), 376-386. doi:10.1080/00224065.1999.11979944Yu, H., & MacGregor, J. F. (2003). Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144. doi:10.1016/s0169-7439(03)00065-0Yu, H., MacGregor, J. F., Haarsma, G., & Bourg, W. (2003). Digital Imaging for Online Monitoring and Control of Industrial Snack Food Processes. Industrial & Engineering Chemistry Research, 42(13), 3036-3044. doi:10.1021/ie020941

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    War, Taxes and Borders: How Beer Created Belgium

    Full text link
    The present-day border between Belgium and the Netherlands traces back to the separation of the Low Countries after the Dutch Revolt (1566-1648) against Spanish rule. The capacity to finance war expenditures played a central role in the outcome of this conflict. Excise taxes on beer consumption were the single largest income source in Holland, the leading province of the Dutch Republic. Beer taxes thus played a crucial role in financing the Dutch Revolt which led to the separation of the Low Countries and, eventually, the creation of Belgium

    Expansions of cytotoxic CD4+CD28− T-cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection

    Get PDF
    A large proportion of cardiovascular pathology results from immune-mediated damage, including systemic inflammation and cellular proliferation, which cause a narrowing of the blood vessels. Expansions of cytotoxic CD4+ T-cells characterized by loss of CD28 (‘CD4+CD28− T-cells’ or ‘CD4+CD28null cells’) are closely associated with cardiovascular disease (CVD), in particular coronary artery damage. Direct involvement of these cells in damaging the vasculature has been demonstrated repeatedly. Moreover, CD4+CD28− T-cells are significantly increased in rheumatoid arthritis (RA) and other autoimmune conditions. It is striking that expansions of this subset beyond 1-2% occur exclusively in CMV-infected people. CMV infection itself is known to increase the severity of autoimmune diseases, in particular RA and has also been linked to increased vascular pathology. A review of the recent literature on immunological changes in cardiovascular disease, RA, and CMV infection provides strong evidence that expansions of cytotoxic CD4+CD28− T-cells in RA and other chronic inflammatory conditions are limited to CMV-infected patients and driven by CMV-infection. They are likely to be responsible for the excess cardiovascular mortality observed in these situations. The CD4+CD28− phenotype convincingly links CMV infection to cardiovascular mortality based on a direct cellular-pathological mechanism rather than epidemiological association

    Death and Science: The Existential Underpinnings of Belief in Intelligent Design and Discomfort with Evolution

    Get PDF
    The present research examined the psychological motives underlying widespread support for intelligent design theory (IDT), a purportedly scientific theory that lacks any scientific evidence; and antagonism toward evolutionary theory (ET), a theory supported by a large body of scientific evidence. We tested whether these attitudes are influenced by IDT's provision of an explanation of life's origins that better addresses existential concerns than ET. In four studies, existential threat (induced via reminders of participants' own mortality) increased acceptance of IDT and/or rejection of ET, regardless of participants' religion, religiosity, educational background, or preexisting attitude toward evolution. Effects were reversed by teaching participants that naturalism can be a source of existential meaning (Study 4), and among natural-science students for whom ET may already provide existential meaning (Study 5). These reversals suggest that the effect of heightened mortality awareness on attitudes toward ET and IDT is due to a desire to find greater meaning and purpose in science when existential threats are activated

    Swimming in a Sea of Shame: Incorporating Emotions into Explanations of Institutional Reproduction and Change

    Get PDF
    We theorize the role in institutional processes of what we call the shame nexus, a set of shame-related constructs: felt shame, systemic shame, sense of shame, and episodic shaming. As a discrete emotion, felt shame signals to a person that a social bond is at risk and catalyzes a fundamental motivation to preserve valued bonds. We conceptualize systemic shame as a form of disciplinary power, animated by persons’ sense of shame, a mechanism of ongoing intersubjective surveillance and self-regulation. We theorize how the duo of the sense of shame and systemic shame drives the self-regulation that underpins persons’ conformity to institutional prescriptions and institutional reproduction. We conceptualize episodic shaming as a form of juridical power used by institutional guardians to elicit renewed conformity and reassert institutional prescriptions. We also explain how episodic shaming may have unintended effects, including institutional disruption and recreation, when it triggers sensemaking among targets and observers that can lead to the reassessment of the appropriateness of institutional prescriptions or the value of social bonds. We link the shame nexus to three broad categories of institutional work

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers.

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    corecore