118 research outputs found

    Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models

    Get PDF
    Three-dimensional (3D) culture models have gained relevant interest in tissue engineering and drug discovery owing to their suitability to reproduce in vitro some key aspects of human tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of (patho)physiological features of human tissues. However, most of the analyses aimed at characterizing these models are based on time-consuming and endpoint assays, which can provide only static and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture systems; however, their translation and integration within 3D hydrogel-based systems is not straight forward, due to the geometry and materials properties of these advanced cell culturing approaches. Therefore, researchers have adopted different strategies, through the development of biochemical, electrochemical and optical sensors, but challenges still remain in employing these devices. In this review, after examining recent advances in adapting existing biosensors from traditional cell monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures

    A tool for declarative Trace Alignment via automated planning

    Get PDF
    We present a tool, called TraceAligner, for solving Trace Alignment by first compiling into Planning and then solving it with any available cost-optimal planner. TraceAligner can produce different variants of the output Planning instance, each offering different degrees of readability and solution efficiency. The Planning instance is expressed in PDDL, the Planning Domain Definition Language. The tool can be easily extended and coupled with any planner taking PDDL as input language. A thorough experimental analysis has shown that the approach dramatically outperforms existing ad-hoc tools, thus making TraceAligner the best-performing tool for Trace Alignment with declarative specifications

    In vitro demonstration of intestinal absorption mechanisms of different sugars using 3d organotypic tissues in a fluidic device

    Get PDF
    Intestinal permeability is crucial in regulating the bioavailability and, consequently, the biological effects of drugs and compounds. However, systematic and quantitative studies of the absorption of molecules are quite limited due to a lack of reliable experimental models able to mimic human in vivo responses. In this work, we present an in vitro perfused model of the small intestinal barrier using a 3D reconstructed intestinal epithelium integrated into a fluid-dynamic bioreactor (MIVO\uae) resembling the physiological stimuli of the intestinal environment. This platform was investigated in both healthy and induced pathological conditions by monitoring the absorption of two non-metabolized sugars, lactulose and mannitol, frequently used as indicators of intestinal barrier dysfunctions. In healthy conditions, an in vivo-like plateau of the percentage of absorbed sugars was reached, where mannitol absorption was much greater than lactulose absorption. Moreover, a model of pathologically altered intestinal permeability was generated by depleting extracellular Ca2+ using a calcium-specific chelator. After calcium depletion, the pattern of sugar passage observed under pathological conditions was reversed only in dynamic conditions in the MIVO\uae chamber, due to the dynamic fluid flow beneath the membrane, but not in static conditions. Therefore, the combination of the MIVO\uae with the EpiIntestinal\u2122 platform can represent a reliable in vitro model to study the passage of molecules across the healthy or pathological small intestinal barrier by discriminating the two main mechanisms of intestinal absorption

    Cell-laden hydrogel as a clinical-relevant 3D model for analyzing neuroblastoma growth, immunophenotype, and susceptibility to therapies

    Get PDF
    High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-y-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-y induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions.Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome

    Get PDF
    Background: Severe early-onset erythroderma and gut inflammation, with massive tissue infiltration of oligoclonal activated T cells are the hallmark of Omenn syndrome (OS). Objective: The impact of altered gut homeostasis in the cutaneous manifestations of OS remains to be clarified. Methods: We analyzed a cohort of 15 patients with OS and the 129Sv/C57BL/6 knock-in Rag2R229Q/R229Q (Rag2R229Q) mouse model. Homing phenotypes of circulating lymphocytes were analyzed by flow cytometry. Inflammatory cytokines and chemokines were examined in the sera by ELISA and in skin biopsies by immunohistochemistry and in situ RNA hybridization. Experimental colitis was induced in mice by dextran sulfate sodium salt. Results: We show that memory/activated T cells from patients with OS and from the Rag2R229Q mouse model of OS abundantly express the skin homing receptors cutaneous lymphocyte associated antigen and CCR4 (Ccr4), associated with high levels of chemokine C-C motif ligands 17 and 22. Serum levels of LPS are also elevated. A broad TH1/TH2/TH17 inflammatory signature is detected in the periphery and in the skin. Increased Tlr4 expression in the skin of Rag2R229Q mice is associated with enhanced cutaneous inflammation on local and systemic administration of LPS. Likewise, boosting colitis in Rag2R229Q mice results in increased frequency of Ccr4+ splenic T cells and worsening of skin inflammation, as indicated by epidermal thickening, enhanced epithelial cell activation, and dermal infiltration by TH1 effector T cells. Conclusions: These results support the existence of an interplay between gut and skin that can sustain skin inflammation in OS

    Homeostatic expansion of autoreactive immunoglobulin-secreting cells in the Rag2 mouse model of Omenn syndrome

    Get PDF
    Hypomorphic RAG mutations, leading to limited V(D)J rearrangements, cause Omenn syndrome (OS), a peculiar severe combined immunodeficiency associated with autoimmune-like manifestations. Whether B cells play a role in OS pathogenesis is so far unexplored. Here we report the detection of plasma cells in lymphoid organs of OS patients, in which circulating B cells are undetectable. Hypomorphic Rag2R229Q knock-in mice, which recapitulate OS, revealed, beyond severe B cell developmental arrest, a normal or even enlarged compartment of immunoglobulin-secreting cells (ISC). The size of this ISC compartment correlated with increased expression of Blimp1 and Xbp1, and these ISC were sustained by elevated levels of T cell derived homeostatic and effector cytokines. The detection of high affinity pathogenic autoantibodies toward target organs indicated defaults in B cell selection and tolerance induction. We hypothesize that impaired B cell receptor (BCR) editing and a serum B cell activating factor (BAFF) abundance might contribute toward the development of a pathogenic B cell repertoire in hypomorphic Rag2R229Q knock-in mice. BAFF-R blockade reduced serum levels of nucleic acid-specific autoantibodies and significantly ameliorated inflammatory tissue damage. These findings highlight a role for B cells in OS pathogenesis

    Homeostatic expansion of autoreactive immunoglobulin-secreting cells in the Rag2 mouse model of Omenn syndrome

    Get PDF
    Hypomorphic RAG mutations, leading to limited V(D)J rearrangements, cause Omenn syndrome (OS), a peculiar severe combined immunodeficiency associated with autoimmune-like manifestations. Whether B cells play a role in OS pathogenesis is so far unexplored. Here we report the detection of plasma cells in lymphoid organs of OS patients, in which circulating B cells are undetectable. Hypomorphic Rag2R229Q knock-in mice, which recapitulate OS, revealed, beyond severe B cell developmental arrest, a normal or even enlarged compartment of immunoglobulin-secreting cells (ISC). The size of this ISC compartment correlated with increased expression of Blimp1 and Xbp1, and these ISC were sustained by elevated levels of T cell derived homeostatic and effector cytokines. The detection of high affinity pathogenic autoantibodies toward target organs indicated defaults in B cell selection and tolerance induction. We hypothesize that impaired B cell receptor (BCR) editing and a serum B cell activating factor (BAFF) abundance might contribute toward the development of a pathogenic B cell repertoire in hypomorphic Rag2R229Q knock-in mice. BAFF-R blockade reduced serum levels of nucleic acid-specific autoantibodies and significantly ameliorated inflammatory tissue damage. These findings highlight a role for B cells in OS pathogenesis

    Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications

    Get PDF
    BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients. OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs. DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification. PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries. MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes. RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure. CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome

    Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - An observational study in 29 countries

    Get PDF
    BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients. OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs. DESIGN This was a prospective international 1-week observational study using the ‘Assess Respiratory Risk in Surgical Patients in Catalonia risk score’ (ARISCAT score) for PPC for risk stratification. PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries. MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes. RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (V T) size was 500 ml, or 7 to 9 ml kg−1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P ˂ 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P ˂ 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure. CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high V T and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome.</p
    corecore