20 research outputs found

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Individualized pazopanib dosing : A prospective feasibility study in cancer patients

    No full text
    Purpose: Pazopanib is a tyrosine kinase inhibitor approved for the treatment of renal cell carcinoma and soft tissue sarcoma. Retrospective analyses have shown that an increased median progression-free survival and tumor shrinkage appear in patients with higher plasma trough levels (Cmin). Therefore, patients with low Cmin might benefit from pharmacokinetically guided individualized dosing. Experimental Design: We conducted a prospective multicenter trial in 30 patients with advanced solid tumors. Pazopanib Cmin was measured weekly by LC-MS/MS. At weeks 3, 5, and 7, the pazopanib dose was increased if the measured Cmin was <20 mg/L and toxicity was <grade 3. Results: In total, 17 patients had at least one Cmin <20 mg/L at weeks 3, 5, and 7. Of these, 10 were successfully treated with a pharmacokinetically guided dose escalation, leading to daily dosages ranging from 1,000 to 1,800 mg. Cmin in these patients increased significantly from 13.2 (38.0%) mg/L [mean (CV%)] to 22.9 mg/L (44.9%). Thirteen patients had all Cmin levels ≥ 20.0 mg/L. Of these, 9 patients with a high Cmin of 51.3 mg/L (45.1%) experienced ≥ grade 3 toxicity and subsequently required a dose reduction to 600 or 400 mg daily, yet in these patients, Cmin remained above the threshold at 28.2 mg/L (25.3%). Conclusions: A pharmacokinetically guided individualized dosing algorithm was successfully applied and evaluated. The dosing algorithm led to patients being treated at dosages ranging from 400 to 1,800 mg daily. Further studies are needed to show a benefit of individualized dosing on clinical outcomes, such as progression-free surviva

    Phase I Study of Oral Gemcitabine Prodrug (LY2334737) Alone and in Combination with Erlotinib in Patients with Advanced Solid Tumors

    No full text
    Purpose: LY2334737 is an orally available prodrug of gemcitabine. The objective of this study was to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT) of daily administration of LY2334737 with or without erlotinib. Experimental Design: Patients with advanced or metastatic cancer were treated with escalating doses of LY2334737 monotherapy or in combination with continuous daily administration of 100 mg erlotinib. LY2334737 was given once daily for 14 days of a 21-day cycle. The study was extended with a bioequivalence trial to investigate a novel LY2334737 drug formulation. Results: A total of 65 patients were treated in this study. The MTD was 40 mg LY2334737. Fatigue was the most frequent DLT for LY2334737 monotherapy (4 patients) followed by elevated transaminase levels (2 patients), both observed at the 40- to 50-mg dose levels. Among the 10 patients in the combination arm, 2 had DLTs at the 40-mg dose level. These were fatigue and elevated liver enzyme levels. The most common adverse events were fatigue (n = 38), nausea (n = 27), vomiting (n = 24), diarrhea (n = 23), anorexia (n = 20), pyrexia (n = 18), and elevated transaminase levels (n = 14). The pharmacokinetics showed dose proportional increase in LY2334737 and gemcitabine exposure. The metabolite 2',2'-difluorodeoxyuridine accumulated with an accumulation index of 4.3 (coefficient of variation: 20%). In one patient, complete response in prostate-specific antigen was observed for 4 cycles, and stable disease was achieved in 22 patients overall. Pharmacokinetic analysis showed that the 2 investigated LY2334737 drug formulations were bioequivalent. Conclusions: LY2334737 displays linear pharmacokinetics and the MTD is 40 mg with or without daily administration of 100 mg erlotinib. Signs of antitumor activity warrant further development. Clin Cancer Res; 17(18); 6071-82. (C) 2011 AACR

    A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours

    No full text
    BACKGROUND: This phase I, open-label, dose-escalation study evaluated the safety, pharmacokinetics and pharmacodynamics of combination therapy with the HDM2 inhibitor SAR405838 and the MEK1/2 inhibitor pimasertib administered orally once daily (QD) or twice daily (BID) in locally advanced or metastatic solid tumours (NCT01985191). METHODS: Patients with locally advanced or metastatic solid tumours with documented wild-type TP53 and RAS or RAF mutations were enroled. A 3 + 3 dose-escalation design was employed. The primary objective was to assess maximum tolerated dose (MTD). RESULTS: Twenty-six patients were treated with SAR405838 200 or 300 mg QD plus pimasertib 60 mg QD or 45 mg BID. The MTD was SAR405838 200 mg QD plus pimasertib 45 mg BID. The most common dose-limiting toxicity was thrombocytopenia. The most frequently occurring treatment-related adverse events were diarrhoea (81%), increased blood creatine phosphokinase (77%), nausea (62%) and vomiting (62%). No significant drug-drug interactions were observed. The biomarkers MIC-1 and pERK were, respectively, upregulated and downregulated in response to study treatment. In 24 efficacy-evaluable patients, one patient (4%) had a partial response and 63% had stable disease. CONCLUSIONS: The safety profile of SAR405838 and pimasertib combined was consistent with the safety profiles of both drugs. Preliminary antitumour activity was observed

    Targeted Next Generation Sequencing as a Reliable Diagnostic Assay for the Detection of Somatic Mutations in Tumours Using Minimal DNA Amounts from Formalin Fixed Paraffin Embedded Material

    Get PDF
    BACKGROUND: Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making. METHOD: We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering. RESULTS: Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5% concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detection of low-frequency variants. The reliability of mutation analysis could be further improved with manual inspection of sequence data. CONCLUSION: Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF tissue when using appropriate analysis settings, even with low input DNA

    A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours

    No full text
    BACKGROUND: This phase I, open-label, dose-escalation study evaluated the safety, pharmacokinetics and pharmacodynamics of combination therapy with the HDM2 inhibitor SAR405838 and the MEK1/2 inhibitor pimasertib administered orally once daily (QD) or twice daily (BID) in locally advanced or metastatic solid tumours (NCT01985191). METHODS: Patients with locally advanced or metastatic solid tumours with documented wild-type TP53 and RAS or RAF mutations were enroled. A 3 + 3 dose-escalation design was employed. The primary objective was to assess maximum tolerated dose (MTD). RESULTS: Twenty-six patients were treated with SAR405838 200 or 300 mg QD plus pimasertib 60 mg QD or 45 mg BID. The MTD was SAR405838 200 mg QD plus pimasertib 45 mg BID. The most common dose-limiting toxicity was thrombocytopenia. The most frequently occurring treatment-related adverse events were diarrhoea (81%), increased blood creatine phosphokinase (77%), nausea (62%) and vomiting (62%). No significant drug-drug interactions were observed. The biomarkers MIC-1 and pERK were, respectively, upregulated and downregulated in response to study treatment. In 24 efficacy-evaluable patients, one patient (4%) had a partial response and 63% had stable disease. CONCLUSIONS: The safety profile of SAR405838 and pimasertib combined was consistent with the safety profiles of both drugs. Preliminary antitumour activity was observed

    Phase Ib Study of Lumretuzumab Plus Cetuximab or Erlotinib in Solid Tumor Patients and Evaluation of HER3 and Heregulin as Potential Biomarkers of Clinical Activity

    No full text
    AbstractPurpose: This study investigated the safety, clinical activity, and target-associated biomarkers of lumretuzumab, a humanized, glycoengineered, anti-HER3 monoclonal antibody (mAb), in combination with the EGFR-blocking agents erlotinib or cetuximab in patients with advanced HER3-positive carcinomas.Experimental Design: The study included two parts: dose escalation and dose extension phases with lumretuzumab in combination with either cetuximab or erlotinib, respectively. In both parts, patients received lumretuzumab doses from 400 to 2,000 mg plus cetuximab or erlotinib according to standard posology, respectively. The effect of HRG mRNA and HER3 mRNA and protein expression were investigated in a dedicated extension cohort of squamous non–small cell lung cancer (sqNSCLC) patients treated with lumretuzumab and erlotinib.Results: Altogether, 120 patients were treated. One dose-limiting toxicity (DLT) in the cetuximab part and two DLTs in the erlotinib part were reported. The most frequent adverse events were gastrointestinal and skin toxicities, which were manageable. The objective response rate (ORR) was 6.1% in the cetuximab part and 4.2% in the erlotinib part. In the sqNSCLC extension cohort of the erlotinib part, higher tumor HRG and HER3 mRNA levels were associated with a numerically higher disease control rate but not ORR.Conclusions: The toxicity profile of lumretuzumab in combination with cetuximab and erlotinib was manageable, but only modest clinical activity was observed across tumor types. In the sqNSCLC cohort, there was no evidence of meaningful clinical benefit despite enriching for tumors with higher HRG mRNA expression levels. Clin Cancer Res; 23(18); 5406–15. ©2017 AACR.</jats:p

    Run and library statistics.

    No full text
    <p>A) Boxplot of run statistics of FFPE (green) and FF (orange) samples for 4 variables: 1. the percentage of ISP (Ion Sphere Particle) density (the addressable wells on the chip which have detectable loading); 2. usable reads of the total number of reads (percentage of ISPs that pass the polyclonal, low quality, and primer dimer filters); 3. polyclonals, ISPs that contain more than one template sequence per ISP and 4. low quality, ISPs with a low or unrecognizable signal. The upper and lower “hinges” of the boxplots correspond to the first and third quartiles (the 25<sup>th</sup> and 75<sup>th</sup> percentiles). The upper “whisker” extends from the hinge to the highest value that is within 1.5*IQR of the line, where IQR is the inter-quartile range (the distance between the first and third quartiles). The lower “whisker” extends from the hinge to the lowest value within 1.5*IQR of the hinge. Data beyond the end of the vertical lines are outliers and plotted as points. B) Library statistics of FFPE (green) and FF (orange) samples; the mean target base read depth (including non-covered target bases); the number of reads mapped to the full reference genome; and the percentage of mapped reads which are aligned to the target region. Significant differences calculated by means of an independent t-test between FFPE and FF samples are depicted with ** p = 0.002 or ***p = 0.0009).</p
    corecore