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Abstract

Background

Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple

genetic aberrations in diagnostic pathology practice, which is necessary for personalized

cancer treatment. However, no standards regarding input material have been defined. This

study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed

paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. More-

over, this study aimed to explore a standardized analysis pipeline to support consistent clini-

cal decision-making.

Method

We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq

Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related

genes, and validated the NGS detected variants in 250 FFPE samples using standard diag-

nostic assays. Next, 386 tumour samples were sequenced to explore the effect of input

material on variant detection variables. For variant calling, Ion Torrent analysis software

was supplemented with additional variant annotation and filtering.
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Results

Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation

showed a 98.5% concordance between NGS and conventional sequencing techniques,

where NGS provided both the advantage of low input DNA concentration and the detection

of low-frequency variants. The reliability of mutation analysis could be further improved with

manual inspection of sequence data.

Conclusion

Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF

tissue when using appropriate analysis settings, even with low input DNA.

Introduction
Sequencing the first human genome in 2008 using massive parallel sequencing was suggested
to be the first step in personalized medicine.[1] For clinical decision-making, obtaining genetic
information on the entire genome is less suitable due to the high costs, long turnaround time
(TAT) and the vast amount of genetic variants with unknown clinical implications. Therefore,
simultaneous sequencing of multiple targetable cancer associated genes is gaining popularity.
Benchtop Next Generation Sequencing (NGS) platforms and accompanying gene panels are
therefore more suitable for routine diagnostics. These platforms provide a cost- and time effi-
cient alternative to classical sequencing techniques like Sanger sequencing.[2, 3] However, suf-
ficiently powered studies providing evidence that NGS is reliable enough to be used in a
diagnostic workflow are lacking.

In the routine clinical workup of cancer patients, NGS based techniques need to meet several
criteria. The turnaround time between tissue collection and interpretation of sequencing should
be short, the NGS platform should be able to handle limited amounts of input material from sev-
eral sources including formalin fixed paraffin embedded (FFPE) material, sequencing must be
deep enough to detect low frequency mutations which may predict therapy resistance.[4]

Currently, two NGS platforms are widely used for diagnostic purposes: the MiSeq/HiSeq/
NextSeq (Illumina, Hayward, CA, USA) and the Ion Torrent Personal Genome Machine
(PGM) (Life Technologies, Carlsbad, CA, USA).[5, 6] Both platforms could theoretically be
implemented for focused gene re-sequencing in routine cancer diagnostics. The MiSeq/HiSeq/
NextSeq platform has a higher sequencing capacity and lower costs per base, but requires gen-
erally 50–200 ng input DNA which cannot always be obtained from small biopsies[7–9],
although alternative library preparation kits are available which use 30 ng DNA.[10] Variant
calling of FFPE samples in a clinical setting relies on variant allele frequencies (VAF) of 5–15%,
[7, 11, 12] detection of VAF<5% require further validation, and TAT is typically one to two
weeks for FFPE samples.[8, 13, 14]

The Ion Torrent platform in combination with Ion AmpliSeq multiplex PCR can use a
DNA input as low as 10 ng and the TAT can theoretically be one week.[15, 16] Furthermore, a
routine sequencing depth of 500–1,000x can be obtained at costs per sequencing request (e.g.
KRAS and NRAS sequencing for colorectal cancer) that are similar to conventional Sanger
sequencing[16], and VAF of 2% can be identified reliably.[17–20] Both platforms could theo-
retically be implemented for focused gene re-sequencing in routine cancer diagnostics, where
the choice for one specific platform will depend on the amount of input material, the number
of NGS requests and the required TAT.
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Currently, standardized NGS kits are available providing every laboratory with the option
to perform NGS. Multiple studies have shown that these standardized kits provide reliable
sequencing results in routine cancer diagnostics.[12, 17–20] However, a standardized pipeline
for annotation and filtering and interpretation of results for clinical decision-making has not
been provided. We routinely tested the Ion Torrent PGM benchtop platform combined with a
commercial 50 gene Cancer Hotspot Panel on both fresh frozen (FF) as well as FFPE samples
to see whether there are major quality differences between these sample types, explored the
lower DNA input limits and validated the results obtained to establish its value for diagnostic
use in the routine workup of cancer patients.

Materials and Methods

Patient Selection
First, 250 FFPE samples were collected from the archives of the University Medical Center
Utrecht, of which 135 samples were retrospectively and 115 prospectively collected. The retro-
spective samples consisted of both mutated and wildtype samples as called by conventional meth-
ods in routine pathology diagnostics. These conventional sequencing analyses consisted of the
following techniques to identify mutations in several genes and exons: KRAS exon 2 & 3 and
EGFR exon 19–21 using the High Resolution Melting technique, BRAF V600 by Cobas analysis,
and TP53 exon 4–9, CTNNB1 exon 3, cKIT exon 9 & 11, PDGFRa exon 12 & 18 by means of
Sanger Sequencing (S1 Table). The prospective samples consisted of all mutation analysis requests
in our laboratory for a period of 3 months, in total 115 samples. The 250 samples included 23
normal tissues (either normal tissue adjacent to the tumours in the same tissue block or from
another tissue block from the same patient) and 227 tumour samples including 15 clonality
requests to determine whether several tumours in one patient had a common origin, of which 8
showed a clonal relation between the tumours (see S1 Fig and S2 Table for tissue distribution).

Next, after completing the validation of the Ion Torrent NGS method of the 250 samples
described above, NGS was performed successfully for another 386 samples, of which 290 fresh
frozen (FF) and 96 non-paired FFPE tumour samples (see Fig 1A for overview of sample num-
bers). FF samples were analysed to determine eligibility for enrolment into trials for targeted
therapies of the Center for Personalized Cancer Treatment (CPCT; http://www.cpct.nl/en.
aspx), while FFPE samples were submitted for routine pathology diagnostics. Written informed
consent was obtained from all patients contributing FF tumour samples for one of the CPCT
trials and data from FFPE samples was used anonymously. Institutional Review Board approval
was obtained and research was carried out in accordance with the ethical guidelines of the
Foundation Federation of Dutch Medical Scientific Societies.

NGS was performed according to the flowchart depicted in Fig 1B and is described in more
detail below. The complete NGS process from NGS requisition up to reporting of the NGS
findings could be completed within 5 working days.

Sample Preparation
For FFPE samples, tissue was fixed in PBS buffered formalin and embedded in paraffin. A 5 μm
section was H&E stained for routine pathology diagnostics. Alternatively tissue was fresh frozen.

Upon arrival of both the NGS requisition and FF or FFPE tissue, 5 μm thick H&E sections
were prepared, tumour percentage was determined by an experienced and dedicated patholo-
gist (SMW) trained in determining tumour percentage, and the most tumour rich area was
encircled for macro dissection. Minimal input was 1 cm2 of a 5 μm tumour tissue section and a
minimal tumour percentage of 10% for FFPE. DNA was isolated using the Cobas method
(Roche). DNA concentration was determined using Qubit Fluorometer (Life Technologies).
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For fresh frozen tissue, biopsies containing more than 30% tumour were selected based on
H&E staining by experienced and dedicated pathologists, and DNA was isolated using the Nor-
Diag Arrow (Isogen Life Sciences) as described by the manufacturer.

For FF and FFPE samples, a total of 10 and 20 ng of input DNA was used, respectively, in a
final volume of 12 μl. If the DNA concentration appeared to be too low and if tissue was still
available, additional DNA was isolated. If there was no remaining tissue, conventional muta-
tion analysis techniques, like sanger sequencing, were performed for FFPE samples.

Next Generation Sequencing
The Ion Torrent Library was prepared using the Ion AmpliSeq Cancer Panel for the validation
study (n = 250) and the Ion AmpliSeq Cancer Hotspot Panel v2 (Life Technologies) for the
remaining samples (n = 386). The latter allows for simultaneous amplification of 207 ampli-
cons in hotspot areas of 50 oncogenes and tumour suppressor genes (46 genes present in
AmpliSeq Cancer Panel supplemented by 4 genes of interest being EZH2, IDH2, GNA11 and
QNAC). PCR was performed in 17 cycles for FF samples and in 20 cycles for FFPE samples.

Fig 1. Next Generation Sequencing workflow for routine diagnostics. A) Number of samples included in this study. B) Ion Torrent NGS workflow
analysis by which routine diagnostics from tissue arrival to reporting results to the clinician is performed within 5 working days. First, tumour percentage is
determined in control sections, and subsequently tumour tissue is macro dissected, DNA is isolated and NGS is performed. If insufficient DNA is isolated and
no further tissue is available, conventional techniques like Sanger sequencing is performed. Somatic variants are identified by the Torrent Variant Caller
supplemented with variant annotation and filtering. Variants are manually checked in IGV and discussed in a multidisciplinary meeting with necessary
clinicians. Finally, results are reported to the responsible clinician.

doi:10.1371/journal.pone.0149405.g001
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Samples were barcoded using IonXpress Barcode Adapters (Life Technologies) to allow for dis-
crimination between samples within a NGS run. The DNA concentration of the samples within
one sequencing run were normalized using the Qubit 2.0 fluorometer (ThermoFisher Scien-
tific) or the Ion Library Equalizer kit. The Ion AmpliSeq Library Kit 2.0 (Life Technologies)
was used for library preparation. The library was mixed with Ion Sphere Particles (ISPs) and
the subsequent emulsion PCR and enrichment were performed using the Ion PGMTM Tem-
plate OT2 200 Template Kit and the Ion One Touch 2 instrument (Life Technologies).
Sequencing was performed using the Ion PGMTM Sequencing 200 kit v2 using the Ion 316TM

or 318TM chip (Life Technologies) (maximum number of samples on 316 and 318 chip were 6
and 12 respectively). FF and FFPE samples were run on separate chips. Samples were run on
the Ion Torrent PGM SystemTM (Life Technologies) as described by the manufacturer.

Data Analysis
Sequencing results of the Ion Torrent PGM run were presented via the Torrent Browser, a
web-based user interface on the Torrent Server. A Torrent Browser run report contains statis-
tics and quality metrics for the run, such as the Ion Sphere™ Particle (ISP) density, percentage
of polyclonal ISPs (ISPs carrying clones from two or more templates), low quality percentage
(percentage of ISPs with a low or unrecognizable signal), and percentage of usable reads (the
percentage of Library ISPs that pass the polyclonal, low quality, and primer dimer filters).
These statistics were used to evaluate the quality of the Ion Torrent PGM run. A good quality
run has at least 30% ISP loading and 30% usable reads. A run will not be rejected based on
these quality metrics. Instead, individual samples are evaluated as described below.

Reads generated were aligned using the Torrent Mapping Alignment Program (TMAP).
This program uses a series of mapping algorithms to map sequence reads to the human refer-
ence genome build 19 (hg19). TMAP has been developed to meet Ion Torrent data mapping
challenges, such as miscalling homopolymer stretches and increasing read lengths over time. It
provides a fast and accurate aligner through the integration of a novel alignment algorithm and
three popular algorithms: BWA-short,[21] BWA-long,[22] SSAHA,[23] and Super-maximal
Exact Matching.[24] The final alignment of each library is stored in a BAM file.

After the alignment step, coverage statistics were generated using Coverage Analysis plugin
version 3.6 (Life Technologies). This plugin takes the TMAP output and a file containing the
target regions of CHPv2 as an input to provide statistics per library such as the mean depth of
coverage, number of mapped reads, and on-target percentage (percentage of mapped reads
which are aligned to the target region). These statistics were used to evaluate the quality of each
library in the run. A good quality library has at least a mean depth of coverage of 800x, 80%
on-target percentage and 100,000 mapped reads.

The Torrent Variant Caller (TVC) plugin version 3.6 is a genetic variant caller for the Ion
Torrent Sequencing platform (Life Technologies) and is used to call somatic single-nucleotide
polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs), insertions, deletions, and
block substitutions. The TVC plugin operates on TMAP generated BAM files and requires the
following as input: a target region file containing the chromosome regions of CHPv2, a hotspot
file containing a list of positions in the human genome and parameter settings file (see S3
Table for TVC parameter settings).

A standardized pipeline was constructed to process each variant detected by the TVC. This
pipeline uses a comprehensive Perl Application Program Interface (API) providing efficient
access to the Ensembl Variation database.[25] For each variant, this pipeline adds annotations
like consequence type (e.g. missense variant), references to other databases (e.g. Unigene,
RefSeq, OMIM, Cosmic), biotype of the transcript (e.g. protein coding), amino acid change

Diagnostic NGS Assay for Cancer Samples

PLOS ONE | DOI:10.1371/journal.pone.0149405 February 26, 2016 5 / 18



caused by the variant, gene description. It also provides variant effect scores (SIFT and Poly-
Phen but these were not used in further evaluation of the variants.

The pipeline also filters out variants that are not included for further evaluation like synony-
mous, 5’ and 3’UTR, and intronic variants, coverage<100x and VAF<5%. Finally, probable
germline variants (determined using public databases dbSNP, 1000 Genomes and GoNL) and
common TMAP or TVC artefacts were filtered out. As an output of the pipeline, a list of vari-
ants of each library including all annotations was generated.

Reporting NGS Findings
Variants annotated and filtered as described above were manually checked by well trained techni-
cians and experienced molecular biologists using IGV (Integrative Genomics Viewer).[26] Vari-
ants were checked for reads being>500x, mutant reads exceeding 30x and whether the variant
was not in a homopolymer stretch. Furthermore, all requested genes (e.g. RAS and BRAF for
colon tumours) were manually checked in IGV as extra check and all amplicons in TP53, cKIT
exon 9 and 11, PDGFRa exon 12 and 18 and EGFR exon 19 and 20 were manually checked since
large deletions can be missed by the TVC version 3.6. Somatic mutations and variants of
unknown significance were noted in a preliminary reporting form. The preliminary report was
discussed in a multidisciplinary meeting involving a pathologist and clinicians to enable a deter-
mination of the clinical significance of variants that were identified with more background infor-
mation on the tumour type and medical history of the patient, resulting in a final set of variants
that was reported in the final report with a clinical annotation of their proposed significance.
Moreover, low frequency variants (VAF<5% and coverage<100x) and variants of unknown
significance (usually outside but very near to known hotspot regions) which were identified were
discussed. If required, a medical oncologist was consulted to discuss potential treatment options.
Furthermore, in case of potential germline variants a clinical geneticist was consulted. The identi-
fication of potential germline variants was only based on sequence analysis of the tumour, where
population genome sequences were consulted to differentiate between germline SNPs and patho-
genic variants. Within 5 working days, the final report including information on potentially
actionable mutations was then sent to the responsible clinician.

Statistical Analysis
Statistical analysis is performed using R. Significant differences are calculated by means of an
independent t-test for sequencing run- and library statistics and chi-squared analysis for com-
parison of base substitutions between FF and FFPE samples. A P value less than 0.05 was con-
sidered to be statistically significant.

Sequence Data
All sequence data described in this manuscript can be found in the European Nucleotide
Archive (ENA). Validation set accession number is: PRJEB11579 (http://www.ebi.ac.uk/ena/
data/view/PRJEB11579). Test set accession number is: PRJEB11475 (http://www.ebi.ac.uk/ena/
data/view/PRJEB11475).

Results

Performance of NGS on DNA Samples from Fresh Frozen and Formalin
Fixed Material
Sequence runs containing only FF samples resulted in significantly more usable reads
(p = 0.0009), defined as reads that passed quality filters (Fig 2A), although the absolute
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difference in usable reads was only 7.1%. Analysis of library statistics showed a significantly
increased percentage on-target reads (p = 0.002) for FF samples compared to FFPE samples
(Fig 2B), where the number of samples containing a low percentage on-target reads was lim-
ited. Moreover, the samples with low percentage on-target and thus a low coverage could easily
be identified: in total 7.7% of the samples were excluded due to a mean coverage<800x of
which 71% showed also<80% on-target. These excluded samples consisted for 98% of FFPE
samples. The remaining quality parameters including the number of mapped reads did not
show differences. Furthermore, all targeted regions could be covered adequately, as none of the
amplicons showed an average mean coverage below 100x leading to exclusion from analysis

Fig 2. Run and library statistics. A) Boxplot of run statistics of FFPE (green) and FF (orange) samples for 4 variables: 1. the percentage of ISP (Ion Sphere
Particle) density (the addressable wells on the chip which have detectable loading); 2. usable reads of the total number of reads (percentage of ISPs that
pass the polyclonal, low quality, and primer dimer filters); 3. polyclonals, ISPs that contain more than one template sequence per ISP and 4. low quality, ISPs
with a low or unrecognizable signal. The upper and lower “hinges” of the boxplots correspond to the first and third quartiles (the 25th and 75th percentiles). The
upper “whisker” extends from the hinge to the highest value that is within 1.5*IQR of the line, where IQR is the inter-quartile range (the distance between the
first and third quartiles). The lower “whisker” extends from the hinge to the lowest value within 1.5*IQR of the hinge. Data beyond the end of the vertical lines
are outliers and plotted as points. B) Library statistics of FFPE (green) and FF (orange) samples; the mean target base read depth (including non-covered
target bases); the number of reads mapped to the full reference genome; and the percentage of mapped reads which are aligned to the target region.
Significant differences calculated by means of an independent t-test between FFPE and FF samples are depicted with ** p = 0.002 or ***p = 0.0009).

doi:10.1371/journal.pone.0149405.g002
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and 87% of the amplicons for FFPE samples and 94% of the amplicons for FF samples were
covered>800x on average (S2 Fig). During the 1,5 year intake period of this study, the
sequence runs performed at a stable level (S3 Fig), with only a slight decrease of the percentage
of usable reads and an increase in the percentage low quality ISPs from the moment of inclu-
sion of FFPE samples half-way this time period.

In summary, a good quality sample could be recognized by a mean coverage of at least 800x
and>80% on target.

When comparing coverage of all amplicons in the Ampliseq Cancer Hotspot Panel v2
between FFPE and FF samples, a decreased coverage for the longer amplicons was seen in
FFPE samples (S4 Fig). There was also no significant difference in the ratio of C> T or G> A
base transitions in the FFPE samples compared to the FF samples (S5 Fig).[27, 28]

Defining the Requirements for Mutation Calling in DNA Samples
To determine the variant detection limit of the assay, dilution experiments of four FF DNA
samples with known TP53mutations were performed. With an R squared of 94.53% the dilu-
tion data were close to the expected allele frequencies (fitted line, S6 Fig). The known TP53
mutations were reliably detected down to an allele frequency of 1%. As dilution assays may
overestimate the sensitivity of the assay a cut-off of 5% allele frequency was therefore set to be
reliable for future diagnostic use.

Since the percentage of tumour cells present in the material used for DNA extraction is an
important variable defining the ability of any assay to detect somatic mutations in diagnostic
specimens, [29] we predicted that a variant could be detected when at least 20 reads were
detected with a coverage of 800x for the amplicon, given the input material contained at least
10% tumour cells (Fig 3). For standard mutation calling, 800x is probably not necessary but
our assay was designed to obtain a high sensitivity even for samples with low tumour cell per-
centages. Next, we performed an analysis on the entire dataset to assess whether tumour cell
percentage of the input material affected the mean VAF. Theoretically, a heterozygous muta-
tion in a diploid sample with 10% tumour cells can be reliably detected when using a detection
limit of a frequency of 5%, but we did not find a relationship between tumour percentage and
VAR (Fig 4).

Validation of Mutational Profiles Obtained with the Ampliseq Assay
We validated 328 variants, of which 323 were concordant between NGS and the conventional
techniques, resulting in an overall concordance of 98.5% (sensitivity of 99.1%)(Fig 5, Table 1).
Of the 5 discordant samples, two false negative variants of TP53 exon 8 (p.G266E) were identi-
fied using Sanger Sequencing but not using NGS, a discrepancy that could not be resolved. A
third false negative variant was identified in TP53 exon 7 (c.757_758insA, p.T253fs�11) that
was not called by TVC but was clearly visible in IGV. The only false positive variant was TP53,
exon 7 (c.723delC, p.C242fs�5) which was called by TVC but was not visible in IGV upon man-
ual check. The final discordant variant was identified in EGFR exon 21 (p.L858R) with an VAF
of 7.3% which was not detected using HRM analysis due to the low tumour cell percentage of
the input material (estimated at 5–10%). TP53 is not fully covered in the Ampliseq panel result-
ing in 19 samples where a TP53 variant was identified with Sanger Sequencing, which could
not be identified using NGS (S4 Table). These data support the conclusion that the Ion Torrent
AmpliSeq workflow is a reliable technique for mutation analysis and manual checks in IGV
further improve its reliability.
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Interpretation of Data Obtained with the Ampliseq Assay
To further understand whether NGS results reflect an expected mutational pattern we analysed
all identified mutations in the TP53, KRAS, BRAF, EGFR and PIK3CA genes in a final dataset
containing 386 samples, 290 derived from FF material and 96 derived from FFPE material.
Even though the AmpliSeq panel does not cover the entire TP53 gene, mutations were identi-
fied throughout the targeted region (Fig 6A). Comparison with the TCGA database shows a
82% overlap of our findings compared to the TCGA database (S8 Fig). As could be expected, a
limited mutation distribution was identified for KRAS, BRAF, EGFR and PIK3CA (Fig 6B–6E)
as these genes contain mutational hotspot locations, which could be detected reliably in this
assay. Of interest, several parts of the PIK3CA gene were sequenced without identifying muta-
tions, suggesting an absence of a systematic bias towards false positive findings based on the
choice of amplicons sequenced.

For all samples site of tumour origin was used to analyse the frequency of mutational distri-
bution among the different tumour types. As expected, TP53 was found to be the most fre-
quently mutated gene in this unselected set of tumours (Fig 7A). The dataset contains a sample

Fig 3. Theoretical model of the detection sensitivity for different variant detection limits. Lines depict the coverage needed for a certain tumour
percentage. In this study a detection limit of 20 variants was used, which, combined with a tumour percentage of at least 10%, leads to a needed coverage of
800x.

doi:10.1371/journal.pone.0149405.g003
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bias towards colorectal cancer, non-small cell lung carcinoma (NSCLC) and melanoma proba-
bly caused by the fact that in these tumour types mutational data already influences therapy
choice, and clinicians are therefore more likely to request NGS analysis in patients with such
tumours (S7 Fig).

Fig 4. Correlation between tumour percentage and allele frequency. The observed allele frequency for all variants detected using NGS is plotted against
the tumour cell percentage as determined by a pathologist. The green line depicts the theoretical line of expected allele frequency of a heterozygous
(somatic) mutation versus tumour cell percentage. A forced linear regression line (black line) was plotted to determine whether increased tumour percentage
affects the mean allele frequency detected with a correlation coefficient of 0.041.

doi:10.1371/journal.pone.0149405.g004
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Discussion
Broad application of NGS for “druggable”mutation detection in a diagnostic setting relies on
several aspects including the possibility to use FFPE material, fast turnaround time and stable
performance over time. In this study we explored whether a targeted multi gene NGS assay can
be used for diagnostic purposes in a clinical oncology setting. It comprises a 50-gene hotspot
panel for the Ion Torrent platform with an average coverage depth of 1000x that was well able
to derive informative data from DNA extracted from FFPE tissue. The requirements for input
material are relatively minor (20 ng DNA from samples with at least 10% tumour cell percent-
age) generating reproducible data with a detection limit of 5% allele frequency within 5 days.
There was no clear correlation between tumour cell percentage and allele frequency of the
called variants above a tumour cell percentage of 10%, implying that tumour percentage is
inherently difficult to interpret. As it lacks a gold standard, we feel that traditional pathology

Table 1. Concordance between conventional techniques and Ion Torrent based NGS analysis.

# Description Gene Exon Variant

323 Concordant NA NA NA

False negative 2 Discordant 2x TP53 exon 8 G266E

False negative 1 Not called by IT, visible in IGV 1x TP53 exon 7 c.757insA

False positive 1 Called by IT, not visible in IGV 1x TP53 exon 7 c.723delC

1 IT more sensitive than conventional technique 1x EGFR exon 20 L858R

For discordant samples information on the variants is provided including a description why the discordance appeared. Only discordant variant TP53,

G266E, could not be explained; it was visible with Sanger sequencing and could not be identified in the Ion Torrent data. Other discordances could be

explained by discrepancies between Ion Torrent software and IGV or by the increased sensitivity of the Ion Torrent compared to the conventional

technique in low tumour percentage samples.

doi:10.1371/journal.pone.0149405.t001

Fig 5. Validation of Next Generation Sequencing. A) The absolute number of samples with a mutation in various genes as denoted on the x-axis that were
used for the validation of NGS by means of the Ion Torrent platform. All samples are colour coded: dark blue are the concordant samples with the same
mutation in standard versus NGS, the intermediate blue are the concordant samples showing no mutation, the light blue bar represents the discordant
samples B) The same data as depicted in Fig 5A, however represented as percentages of all tested samples for a given gene.

doi:10.1371/journal.pone.0149405.g005
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Fig 6. Variant distribution per gene. All graphs depict a lollipop plot (adapted from (Vohra and Biggin, 2013)) showing identified variants relative to a
schematic representation of the gene. Any position with a mutation obtains a circle, the length of the line depends on the number of mutations detected at that
codon. The grey bar represents the entire protein with the different amino acid positions (aa). The coloured boxes are specific functional domains. On top of
the lollipops the most frequent variants are annotated as the amino-acid change at that specific site. Black lines underneath the grey box indicate the regions
where the Ampliseq panel covers the gene. A) Mutations identified in the TP53 gene using NGS, B) KRAS, C) BRAF, D) EGFR and E) PIK3CA.

doi:10.1371/journal.pone.0149405.g006
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review in NGS based analysis is for determining the fact that there is>10% presence of tumour
cells rather than the exact percentage of tumour cells.

It is increasingly appreciated that small genetic sub-clones within a tumour can underlie
resistance,[30–32] therefore, detecting such low-abundance mutations can be of great impor-
tance. It seems furthermore feasible to implement the Ion Torrent platform for ‘liquid biop-
sies’[33] in which plasma cell-free circulating tumour DNA can be extracted from a blood
sample to detect tumour mutations.

Fig 7. Variant distribution of the complete dataset. A) Heatmap of number of variants per tumour group. On the y-axis the different primary tumour site is
depicted and on the x-axis all genes with mutational data are depicted. The relative number of mutations is defined as the number of mutations normalized
per number of samples in the tumour group. B) co-occurrence of different variants in colorectal tumours. The size of the circle around a gene is indicative of
the number of times a variant is identified in the gene. The lines represent co-occurrences between genes where the line thickness indicates the number of
co-occurrences. The colour of the circles indicates the function of the gene: green–tumour suppressor genes and oncogenes, purple–receptor tyrosine
kinases, pink–PI3K pathway, yellow–KRAS/BRAF pathway.

doi:10.1371/journal.pone.0149405.g007
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The process of formalin fixation and paraffin embedding induces chemical modifications,
cross-linking and fragmentation of DNA.[34–37] As a result, DNA isolated from archived
FFPE samples may be of poor quality, which may result in incomplete to even unreliable target
amplification. However, in the present study we have shown comparable sequencing results for
both FF as well as FFPE samples, when fixed according to a standardized protocol, although we
found a trend in decreasing mean coverage depth with increasing amplicon length for FFPE
samples only where amplicon length is stable up to 100 bp. For amplicons above 140 bp
(STK11 and RET) mean coverage depth clearly decreases below 1,000x. Therefore, amplicon
length should be taken into account in the design of future NGS gene panels. The process of
formalin fixation and paraffin embedding is known to lead to C>T or G>A base transitions,
causing non-reproducible sequence alterations.[27, 28, 38] Our results support the fact that
FFPE induced DNA damage appears to be minimal using this targeted hotspot approach,
which has also been suggested elsewhere.[39]

Cross-validation of the Ion Torrent based NGS results using classical sequencing methods
yielded a sensitivity of 98.5% which could even be improved upon manual inspection of
sequence data. Data obtained were in line with results in other studies examining incidence
of mutations across various tumour types. As expected, mutual exclusion of BRAF, KRAS
and NRASmutations was also identified in our dataset (Fig 7B). The interaction plot clearly
confirmed the central role for TP53, KRAS and APC in colorectal tumorigenesis and depicts
potential combinations of mutations that could indicate less frequent subtypes of colorectal
tumours. This type of data analysis on extended datasets could help to define clinically
important subtypes of tumours that we are currently unable to define using standard diag-
nostic tools.

Evaluation of mutations in several genes and exons is already standard in current practice.
For metastatic colorectal and lung cancer patients, where treatment with anti-EGFR monoclo-
nal antibodies is only effective in patients whose tumours are RAS wild type, sequencing 3
exons of KRAS and 3 exons of NRAS is required, and this will possibly also be the case for other
tumour types shortly. The detection of copy number aberrations[40] and translocations, which
are also of major clinical relevance, may be feasible in the near future using a targeted NGS
approach. Personalized treatment approaches are actively exploring combinations of genetic
properties (https://clinicaltrials.gov/). Thus, the need for easy to implement and flexible multi-
gene tests is increasing. The easy addition of extra amplicons to these gene panels provides this
assay with the flexibility needed in light of the fast discovery of new targetable mutations in
cancer diagnostics.

In conclusion, NGS based diagnostics on both FF and FFPE tissue samples can be imple-
mented in the routine clinical setting. Our study provides a guideline for standardized NGS
data annotation using benchtop sequencers combined with commercially available gene
panels.

Supporting Information
S1 Fig. Characteristics of tumour groups. Bar graph of the number of patients per tumour
group for the method validation set in orange and the number of patients per tumour group
for the test set in blue.
(TIF)

S2 Fig. Average mean coverage of the NGS gene panel. Per amplicon in the NGS panel the
average mean coverage for FF and FFPE samples is described. The orange line indicates the
mean coverage threshold of 800x.
(TIF)
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S3 Fig. Changes in run statistics in time. The percentage of ISP density, low quality reads,
polyclonals and usable reads is depicted for all runs (sorted by run date). Runs containing FF
samples show a stable linear regression line for all run statistics. Runs containing FFPE samples
show a decrease in the ISP density and usable reads percentages and an increase in the percent-
age of polyclonals.
(TIF)

S4 Fig. Average mean coverage per length bin. All Ampliseq Cancer Hotspot Panel v2 ampli-
cons were divided in length bins. Average mean coverage for FFPE and FF samples per length
bin is depicted.
(TIF)

S5 Fig. Frequency of different base substitutions for FFPE and fresh frozen samples. For-
malin fixation is known to induce cross-linking of cytosines resulting in a base substitution to a
thymine (C:G>T:A). Using a Chi-squared test, no significant difference in the distribution of
the different base substitutions is identified in FFPE versus FF samples.
(TIF)

S6 Fig. Sensitivity of Ion Torrent runs. Expected and observed frequencies of diluted TP53
variants are plotted. Observed and expected frequencies are very similar indicating that the Ion
Torrent is a very sensitive method that can reliably detect variants with a frequency of 2%.
(TIF)

S7 Fig. Characteristics of tumour groups. Bar graph of the relative number of variants (nor-
malized for tumour group size) per tumour group for the validation set.
(TIF)

S8 Fig. TP53 variant comparison. Variants identified in the TCGA database are compared to
the variants described in this study. A) TP53 variant distribution of the TCGA for comparison
with Fig 6A that contains the TP53 variants identified in this study. B) Venn diagram showing
that the 82% of the TP53 variants identified in this study are also mentioned in the TCGA data-
base.
(TIF)

S1 Table. Gene and exon information of conventional techniques.
(XLSX)

S2 Table. NGS sample characteristics and sequencing results. Sequencing data of all samples
described in this study are visualized in this table. Furthermore, tumour type and patient num-
ber is added to allow identification of multiple tumours from the same patient.
(XLSX)

S3 Table. Settings torrent variant caller. Parameter settings used by the Torrent Variant Cal-
ler for calling somatic variants. For FF samples low stringency settings were used and for FFPE
samples high stringency settings were used.
(XLSX)

S4 Table. Explanation of different results between conventional techniques and NGS. For
TP53 the Ampliseq panel provided less information since the amplicon pool does not cover the
same sequence compared to conventional techniques. NGS coverage of other genes was
improved compared to the conventional technique providing extra information; 2 KRAS exon
4 and 1 TP53 exon 10 mutations were identified in regions that were not tested with the con-
ventional techniques. In 2 samples a BRAF exon 15 (p.V600K) was identified where the Cobas
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technique only provided information on the presence of a mutation, but did not specify which
mutation.
(XLSX)
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