30 research outputs found

    Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Get PDF
    The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM) may predispose to Alzheimer’s disease (AD). The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE) activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE) and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition) and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE) at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition) and BuChE (IC50 = 28 nmol/mL, mixed type inhibition), while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL). Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future

    Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

    Get PDF
    Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases

    Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation

    No full text
    The aim of this study was to assess in vitro the effects of sulphenamide and sulphonamide derivatives of metformin on the activity of human acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), establish the type of inhibition, and assess the potential synergism between biguanides and donepezil towards both cholinesterases (ChEs) and the effects on the β-amyloid aggregation. Sulphonamide 5 with para-trifluoromethyl- and ortho-nitro substituents in aromatic ring inhibited AChE in a mixed-type manner at micromolar concentrations (IC50 = 212.5 ± 48.3 µmol/L). The binary mixtures of donepezil and biguanides produce an anti-AChE effect, which was greater than either compound had alone. A combination of donepezil and sulphonamide 5 improved the IC50 value by 170 times. Compound 5 at 200 µmol/L inhibited Aβ aggregation by ∼20%. In conclusion, para-trifluoromethyl-ortho-nitro-benzenesulphonamide presents highly beneficial anti-AChE and anti-Aβ aggregation properties which could serve as a promising starting point for the design and development of novel biguanide-based candidates for AD treatment

    Structural Comparison of Sulfonamide-Based Derivatives That Can Improve Anti-Coagulation Properties of Metformin

    No full text
    Due to its high efficiency, good safety profile, and potential cardio-protective properties, metformin, a dimethyl biguanide, is the first-line medication in antihyperglycemic treatment for type 2 diabetic patients. The aim of our present study was to assess the effects of eight new sulfonamide-based derivatives of metformin on selected plasma parameters and vascular hemostasis, as well as on endothelial and smooth muscle cell function. The compounds with an alkyl chain (1–3), trifluoromethyl substituent (4), or acetyl group (5) significantly elevated glucose utilization in human umbilical endothelial cells (HUVECs), similarly to metformin. Our novel findings showed that metformin analogues 1–3 presented the most beneficial properties because of their greatest safety profile in the WST-1 cell viability assay, which was also proved in the further HUVEC integrity studies using RTCA DP. Compounds 1–3 did not affect either HUVEC or aortal smooth muscle cell (AoSMC) viability up to 3.0 mM. Importantly, these compounds beneficially affected some of the coagulation parameters, including factor X and antithrombin III activity. In contrast to the above-mentioned metformin analogues, derivatives 4 and 5 exerted more profound anticoagulation effects; however, they were also more cytotoxic towards HUVECs, as IC50 values were 1.0–1.5 mM. In conclusion, the chemical modification of a metformin scaffold into sulfonamides possessing alkyl substituents results in the formation of novel derivatives with potential bi-directional activity including anti-hyperglycemic properties and highly desirable anti-coagulant activity

    Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs)

    No full text
    Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future

    Novel Sulfonamide-Based Analogs of Metformin Exert Promising Anti-Coagulant Effects without Compromising Glucose-Lowering Activity

    No full text
    Metformin, one of the most frequently prescribed oral anti-diabetic drugs, is characterized by multidirectional activity, including lipid lowering, cardio-protective and anti-inflammatory properties. This study presents synthesis and stability studies of 10 novel sulfonamide-based derivatives of metformin with alkyl substituents in the aromatic ring. The potential of the synthesized compounds as glucose-lowering agents and their effects on selected parameters of plasma and vascular hemostasis were examined. Compounds with two or three methyl groups in the aromatic ring (6, 7, 9, 10) significantly increased glucose uptake in human umbilical vein endothelial cells (HUVECs), e.g., 15.8 µmol/L for comp. 6 at 0.3 µmol/mL versus 11.4 ± 0.7 µmol/L for control. Basic coagulation studies showed that all examined compounds inhibit intrinsic coagulation pathway and the process of fibrin polymerization stronger than the parent drug, metformin, which give evidence of their greater anti-coagulant properties. Importantly, synthesized compounds decrease the activity of factor X, a first member of common coagulation pathway, while metformin does not affect coagulation factor X (FX) activity. A multiparametric clot formation and lysis test (CL-test) revealed that the examined compounds significantly prolong the onset of clot formation; however, they do not affect the overall potential of clot formation and fibrinolysis. Erythrotoxicity studies confirmed that none of the synthesized compounds exert an adverse effect on erythrocyte integrity, do not contribute to the massive hemolysis and do not interact strongly with the erythrocyte membrane. In summary, chemical modification of metformin scaffold into benzenesulfonamides containing alkyl substituents leads to the formation of potential dual-action agents with comparable glucose-lowering properties and stronger anti-coagulant activity than the parent drug, metformin
    corecore