79 research outputs found

    Ab-initio calculation of the 6Li{}^6Li binding energy with the Hybrid Multideterminant scheme

    Full text link
    We perform an ab-initio calculation for the binding energy of 6Li{}^6Li using the CD-Bonn 2000 NN potential renormalized with the Lee-Suzuki method. The many-body approach to the problem is the Hybrid Multideterminant method. The results indicate a binding energy of about 31MeV31 MeV, within a few hundreds KeV uncertainty. The center of mass diagnostics are also discussed.Comment: 18 pages with 3 figures. More calculations added, to be published in EPJ

    RQM description of the charge form factor of the pion and its asymptotic behavior

    Full text link
    The pion charge and scalar form factors, F1(Q2)F_1(Q^2) and F0(Q2)F_0(Q^2), are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon-exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As it could be expected, those point-form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q+=0q^+=0) do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD-power-law behavior Q−2Q^{-2}. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F0(Q2)F_0(Q^2), is shown to have the right power-law behavior in any case. The low-Q2Q^2 behavior of the charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Neuroblastoma in relation to joint effects of vitamin A and maternal and offspring variants in vitamin A-related genes: A report of the Children's Oncology Group

    Get PDF
    Background: There is evidence vitamin A plays a role in neuroblastoma. Not only is 13-cis-retinoic acid used as maintenance therapy for high-risk cases, but prenatal vitamin intake use may decrease neuroblastoma risk. We hypothesized that single nucleotide polymorphisms (SNPs) in vitamin A-related genes are may be associated with neuroblastoma risk and potentially be modified by vitamin A intake. Methods: The Neuroblastoma Epidemiology in North America (NENA) study recruited 563 case-parent sets through the Children's Oncology Group's Childhood Cancer Research Network. We ascertained dietary nutrient intake through questionnaires and genotyped 463 SNPs in vitamin A-related genes from saliva DNA. Offspring and maternal log-additive risk ratios (RR) and stratum-specific RR for gene-environment interaction were estimated with a log-linear model. We avoided false positives due to multiple testing by using the false discovery rate (FDR). Results: When all neuroblastoma cases were considered together, no offspring variants met the significance criteria (FDR Q-value < 0.2). One maternal SNP (rs12442054) was associated with decreased risk of neuroblastoma (RR: 0.61; 95% Confidence Interval (CI): 0.47–0.79, Q = 0.076). When the cases were categorized according to prognostic risk category and age at onset, nine offspring SNPs were significantly associated with intermediate-risk neuroblastoma. Maternal rs6776706 was associated with (RR: 0.49; 95% CI: 0.33–0.72, Q = 0.161) high-risk neuroblastoma and maternal rs11103603 (RR: 0.60; 95% CI: 0.45–0.79, Q = 0.127) was associated with neuroblastoma aged <1 year. For gene-environment interaction, maternal rs729147 was associated with decreased risk of neuroblastoma among mothers with vitamin A consumption above the recommendation. Conclusions: Although there is biologic plausibility for the role of vitamin A in neuroblastoma, we found weak evidence of a relationship between vitamin A related genes and neuroblastoma

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v
    • 

    corecore