16 research outputs found

    Twitter as a Tool for Teaching and Communicating Microbiology: The #microMOOCSEM Initiative

    Get PDF
    Online social networks are increasingly used by the population on a daily basis. They are considered a powerful tool for science communication and their potential as educational tools is emerging. However, their usefulness in academic practice is still a matter of debate. Here, we present the results of our pioneering experience teaching a full Basic Microbiology course via Twitter (#microMOOCSEM), consisting of 28 lessons of 40-45 minutes duration each, at a tweet per minute rate during 10 weeks. Lessons were prepared by 30 different lecturers, covering most basic areas in Microbiology and some monographic topics of general interest (malaria, HIV, tuberculosis, etc.). Data analysis on the impact and acceptance of the course were largely affirmative, promoting a 330% enhancement in the followers and a >350-fold increase of the number of visits per month to the Twitter account of the host institution, the Spanish Society for Microbiology. Almost one third of the course followers were located overseas. Our study indicates that Massive Online Open Courses (MOOC) via Twitter are highly dynamic, interactive, and accessible to great audiences, providing a valuable tool for social learning and communicating science. This strategy attracts the interest of students towards particular topics in the field, efficiently complementing customary academic activities, especially in multidisciplinary areas like Microbiology.VersiĂłn del edito

    Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    No full text
    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacteriogenic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) biosorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ~ 3 mg O2.L-1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation model. These results suggested the role of phosphoryl and carboxyl groups as the main functional groups involved in the U(VI) biosorption by S. natans. The results of this PhD work will help to better understand the processes governing U(VI) immobilization, either by S. natans biosorption, sorption onto BIOS or sorption onto iron phosphates, an thus the fate of uranium in near-neutral pH environmentsLes mĂ©taux lourds et les radionuclĂ©ides sont prĂ©sents dans diffĂ©rents Ă©cosystĂšmes du monde Ă  cause de contaminations naturelles ou des activitĂ©s anthropiques. L’utilisation de micro-organismes pour restaurer ces Ă©cosystĂšmes polluĂ©s, processus connu sous le nom de bioremĂ©diation, suscite beaucoup d’intĂ©rĂȘt, spĂ©cialement aux pH proches de la neutralitĂ©. Les minĂ©raux de fer qui encroĂ»tent les bactĂ©ries neutrophiles du fer, notamment les Oxydes de Fer BiogĂ©niques (BIOS en anglais), ont une structure trĂšs faiblement cristalline, qui en plus de leur grande surface et rĂ©activitĂ© font d’eux d’excellents supports pour le piĂ©geage de polluants inorganiques. Dans cette thĂšse nous avons Ă©tudiĂ© les diffĂ©rents mĂ©canismes de piĂ©geage de l’uranium uranium par la bactĂ©rie neutrophile Sphaerotilus natans, choisie comme modĂšle bactĂ©rien de micro-organismes du fer capables de filamenter en formant des gaines. S. natans peut croĂźtre sous forme de cellules individuelles ou formant des filaments. Ces derniers ont Ă©tĂ© utilisĂ©s pour Ă©tudier la biosorption d’U(VI) et sa sorption sur les BIOS. De plus, la sorption d’U(VI) sur les analogues abiotiques de ces minĂ©raux de fer a Ă©tĂ© testĂ©e. Afin d’utiliser les filaments de S. natans pour piĂ©ger l’U(VI), il Ă©tait nĂ©cessaire d’identifier les facteurs induisant la filamentation de S. natans. L’influence de l’oxygĂšne a Ă©tĂ© Ă©tablie en utilisant des techniques de biologie molĂ©culaire et nos rĂ©sultats ont dĂ©montrĂ© que tandis qu’en condition d’oxygĂšne saturĂ© elle croĂźt sous forme de cellules individuelles, une diminution modĂ©rĂ©e d’oxygĂšne Ă  ~ 3 mg O2.L-1 la fait croĂźtre sous la forme dĂ©sirĂ©e, des filaments de S. natans.Les BIOS attachĂ©s aux filaments de S. natans ainsi que ses analogues abiotiques ont Ă©tĂ© analysĂ©s pas XAS au seuil K du Fe. Les deux matĂ©riaux identifiĂ©s sont des phosphates de fer(III) amorphes avec une faible proportion de fer(II), qui prĂ©sentent une rĂ©activitĂ© Ă©levĂ©e pour le piĂ©geage de polluants inorganiques. L’EXAFS au seuil LIII de l’U a montrĂ© la mĂȘme structure pour les couches O, tandis que celles P, Fe et C Ă©taient diffĂ©rentes en fonction des sorbants. Une Ă©tude intĂ©grĂ©e qui combine des techniques expĂ©rimentales avec des calculs de spĂ©ciation a permis de dĂ©crire les isothermes d’adsorption de l’U(VI) en utilisant un modĂšle de complexation de surface. Ces rĂ©sultats suggĂšrent que les groupes phosphoryles et carboxyles sont les groupes fonctionnels principaux pour la biosorption d’U(VI) par des filaments de S. natans. Les rĂ©sultats de cette thĂšse vont aider Ă  comprendre les processus contrĂŽlant l’immobilisation de l’U(VI), soit par la biosorption sur S. natans, la sorption sur les BIOS ou la sorption sur les phosphates de fer, et en consĂ©quence le devenir de l’U en conditions neutre

    Sphaerotilus natans, une bactérie filamenteuse et neutrophile avec une relation avec le fer : mecanismes de piégeage d'uranium

    No full text
    Les mĂ©taux lourds et les radionuclĂ©ides sont prĂ©sents dans diffĂ©rents Ă©cosystĂšmes du monde Ă  cause de contaminations naturelles ou des activitĂ©s anthropiques. L’utilisation de micro-organismes pour restaurer ces Ă©cosystĂšmes polluĂ©s, processus connu sous le nom de bioremĂ©diation, suscite beaucoup d’intĂ©rĂȘt, spĂ©cialement aux pH proches de la neutralitĂ©. Les minĂ©raux de fer qui encroĂ»tent les bactĂ©ries neutrophiles du fer, notamment les Oxydes de Fer BiogĂ©niques (BIOS en anglais), ont une structure trĂšs faiblement cristalline, qui en plus de leur grande surface et rĂ©activitĂ© font d’eux d’excellents supports pour le piĂ©geage de polluants inorganiques. Dans cette thĂšse nous avons Ă©tudiĂ© les diffĂ©rents mĂ©canismes de piĂ©geage de l’uranium uranium par la bactĂ©rie neutrophile Sphaerotilus natans, choisie comme modĂšle bactĂ©rien de micro-organismes du fer capables de filamenter en formant des gaines. S. natans peut croĂźtre sous forme de cellules individuelles ou formant des filaments. Ces derniers ont Ă©tĂ© utilisĂ©s pour Ă©tudier la biosorption d’U(VI) et sa sorption sur les BIOS. De plus, la sorption d’U(VI) sur les analogues abiotiques de ces minĂ©raux de fer a Ă©tĂ© testĂ©e. Afin d’utiliser les filaments de S. natans pour piĂ©ger l’U(VI), il Ă©tait nĂ©cessaire d’identifier les facteurs induisant la filamentation de S. natans. L’influence de l’oxygĂšne a Ă©tĂ© Ă©tablie en utilisant des techniques de biologie molĂ©culaire et nos rĂ©sultats ont dĂ©montrĂ© que tandis qu’en condition d’oxygĂšne saturĂ© elle croĂźt sous forme de cellules individuelles, une diminution modĂ©rĂ©e d’oxygĂšne Ă  ~ 3 mg O2.L-1 la fait croĂźtre sous la forme dĂ©sirĂ©e, des filaments de S. natans.Les BIOS attachĂ©s aux filaments de S. natans ainsi que ses analogues abiotiques ont Ă©tĂ© analysĂ©s pas XAS au seuil K du Fe. Les deux matĂ©riaux identifiĂ©s sont des phosphates de fer(III) amorphes avec une faible proportion de fer(II), qui prĂ©sentent une rĂ©activitĂ© Ă©levĂ©e pour le piĂ©geage de polluants inorganiques. L’EXAFS au seuil LIII de l’U a montrĂ© la mĂȘme structure pour les couches O, tandis que celles P, Fe et C Ă©taient diffĂ©rentes en fonction des sorbants. Une Ă©tude intĂ©grĂ©e qui combine des techniques expĂ©rimentales avec des calculs de spĂ©ciation a permis de dĂ©crire les isothermes d’adsorption de l’U(VI) en utilisant un modĂšle de complexation de surface. Ces rĂ©sultats suggĂšrent que les groupes phosphoryles et carboxyles sont les groupes fonctionnels principaux pour la biosorption d’U(VI) par des filaments de S. natans. Les rĂ©sultats de cette thĂšse vont aider Ă  comprendre les processus contrĂŽlant l’immobilisation de l’U(VI), soit par la biosorption sur S. natans, la sorption sur les BIOS ou la sorption sur les phosphates de fer, et en consĂ©quence le devenir de l’U en conditions neutresHeavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacteriogenic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) biosorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ~ 3 mg O2.L-1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation model. These results suggested the role of phosphoryl and carboxyl groups as the main functional groups involved in the U(VI) biosorption by S. natans. The results of this PhD work will help to better understand the processes governing U(VI) immobilization, either by S. natans biosorption, sorption onto BIOS or sorption onto iron phosphates, an thus the fate of uranium in near-neutral pH environment

    Membrane lipid adaptation of soil Bacteroidetes isolates to temperature and pH

    No full text
    International audience3-hydroxy fatty acids (3-OH FAs) are characteristic components of the Gram-negative bacterial membrane, recently proposed as promising temperature and pH (paleo) proxies in soil. Nevertheless, to date, the relationships between the 3-OH FA distribution and temperature/pH are only based on empirical studies, with no ground truthing work at the microbial level. This work investigated the influence of growth temperature and pH on the lipid composition of three strains of soil Gram-negative bacteria belonging to the Bacteroidetes phylum. Even though non-hydroxy FAs were more abundant than 3-OH FAs in the investigated strains, our results suggest that 3-OH FAs are involved in the membrane adaptation of these bacteria to temperature. The strains shared a common adaptation mechanism to temperature, with a significant increase in the ratio of anteiso vs. iso or normal 3-OH FAs at lower temperature. In contrast with temperature, no common adaptation mechanism to pH was observed, as the variations in the FA lipid profiles differed from one strain to another. We suggest that models reconstructing environmental changes in soils should include the whole suite of 3-OH FAs present in the membrane of Gram-negative bacteria, as all of them could be influenced by temperature or pH at the microbial level

    Membrane lipid adaptation of soil Gram-negative bacteria isolates to temperature and pH

    No full text
    3-hydroxy fatty acids (3-OH FAs) are characteristic components of the Gram-negative bacterial membrane, recently proposed as promising temperature and pH (paleo) proxies in soil. Nevertheless, to date, the relationships between the 3-OH FA distribution and temperature/pH are only based on empirical studies, with no work at the microbial level. This work investigated the influence of growth temperature and pH on the lipid profile in three strains of soil Gram-negative bacteria belonging to the Bacteroidetes phylum. Even though the non-hydroxy FAs were more abundant than the 3-OH FAs in the investigated strains, we showed the important role of the 3-OH FAs in the membrane adaptation of Gram-negative bacteria to temperature. The strains shared a common adaptation mechanism to temperature, with a significant increase in the ratio of anteiso vs. iso or normal 3-OH FAs at lower temperature. In contrast with temperature, no common adaptation mechanism to pH was noticed, the variations in the FA lipid profiles differing from one strain to another. The models envisioning th

    Early diagenesis of radium 226 and radium 228 in lacustrine sediments influenced by former mining sites

    No full text
    International audienceRadium is a naturally occurring radioactive element commonly found at low levels in natural systems such as lacustrine or marine sediments. Anthropogenic activities including former uranium mining activities can lead to the dissemination of radium isotopes having high radiological toxicities, which potentially threaten the safety of impacted nearby environments. Although radium mobility in oxidized environments is known to be largely governed by sorption/desorption onto Fe and Mn oxyhydroxides and coprecipitation with sulfate minerals (e.g. barite), little is known regarding its behavior under reducing conditions, which are the conditions typically encountered in organic-rich systems such as wetlands and sediments.The present study aims at understanding the behavior of long-lived radium isotopes (226Ra and 228Ra), during early diagenetis of lake sediments contaminated by former uranium mining activities. Solid and pore water concentrations of 226Ra and 228Ra were determined using ultra low background gamma spectrometry, which allowed us to improve detection limits and measurement accuracy.This study shows that the downcore distribution of radium isotopes is closely related to the reductive dissolution of iron and manganese oxyhydroxides below the sediment-water interface. The resulting diffusive fluxes of 226Ra and 228Ra (4.1 10-25 and 4.7 10-28 mol.cm-2.s-1) are however significantly lower than other radium-impacted environments, such as uranium mill tailings pond and phosphate industry-impacted sediments, and are similar to those reported for natural marine environments. Hence, in the reduced lacustrine sediments of Saint-Clement, the major fraction of radium trapped by the solid phase, while early diagenesis only induces a slight mobility of this radioelement

    Un abaissement de la concentration en oxygĂšne est un facteur favorisant la croissance sous forme filamenteuse de Sphaerotilus natans

    No full text
    International audienceSphaerotilus natans is a neutrophilic ironrelated sheath-forming filamentous microorganism that presents dual morphotype: single cells and ensheathed cells forming filaments. As S. natans has been proposed as a sorbent for inorganic pollutants and it is occasionally involved in bulking episodes, elucidating factors affecting its filamentous growth is of crucial interest. The purpose of this work was to evaluate the effect of dissolved oxygen (DO) as a factor affecting S. natans filamentation from single cells. A method to quantify S. natans in its filamentous and single-cell morphotypes, based on a differential filtration procedure coupled with quantitative real-time PCR, was developed here. Scanning Electron Microscopy was used to validate the filtration step. Under actively aerated conditions (DO maintained at 7.6 ± 0.1 mg / L), S. natans grew mainly as single cells throughout the experiment, while a depletion in DO concentration (to ~3 mg / L) induced its filamentous growth. Indeed, when oxygen was reduced the proportion of single cells diminished from 83.3 ± 5.9 to 14.3 ± 3.4 % while the filaments increased from 16.7 ± 5.9 to 85.7 ± 3.4 %. Our results suggest that oxygen plays a key role in S. natans filamentation and contribute to better understanding of the filamentous proliferation of this bacterium. In addition, the proposed method will be helpful to evaluate other factors favouring filamentous growth.Sphaerotilus natans est un micro-organisme filamenteux gainĂ© neutrophile prĂ©cipitant le fer dans sa gaine. Il prĂ©sente un double morphotype de croissance : sous forme de cellules individuelles ou de cellules gainĂ©es formant des filaments. S. natans a Ă©tĂ© proposĂ©e comme un chĂ©lateur de polluants inorganiques. Il est parfois impliquĂ© dans des Ă©pisodes de prolifĂ©rations invasives en station d'Ă©puration. La caractĂ©risation des facteurs induisant sa croissance sous forme filamenteuse revĂȘt un intĂ©rĂȘt particulier. Le but de ce travail Ă©tait d'Ă©valuer l'effet inducteur de l'oxygĂšne dissous sur la filamentation de S. natans Ă  partir de cellules dispersĂ©es. Une mĂ©thode de quantification sĂ©lective des diffĂ©rents morphotypes de S. natans, basĂ©e sur une Ă©tape de filtration diffĂ©rentielle couplĂ©e Ă  de la PCR quantitative en temps rĂ©el, a Ă©tĂ© dĂ©veloppĂ©e ici. La microscopie Ă©lectronique Ă  balayage a Ă©tĂ© utilisĂ©e pour valider l'Ă©tape de filtration. Dans des conditions d'aĂ©ration active (OD maintenu Ă  7,6 ± 0,1 mg / L), S. natans croit principalement sous forme de cellules individuelles tout au long de l'expĂ©rience, tandis qu'une diminution de la concentration OD (Ă  ~ 3 mg / L) induit une croissance filamenteuse. Lorsque la concentration d'oxygĂšne est rĂ©duite, la proportion de cellules libres diminue de 83,3% ± 5,9% Ă  14,3% ± 3,4%, tandis que les filaments passent de 16,7% ± 5,9% Ă  85,7% ± 3,4%. Nos rĂ©sultats suggĂšrent que l'oxygĂšne joue un rĂŽle clĂ© dans la filamentation de S. natans et contribue Ă  une meilleure comprĂ©hension de la prolifĂ©ration de cette bactĂ©rie filamenteuse. En outre, la mĂ©thode proposĂ©e pourra ĂȘtre utilisĂ©e pour Ă©valuer d'autres facteurs favorisant la croissance filamenteuse

    Un abaissement de la concentration en oxygĂšne est un facteur favorisant la croissance sous forme filamenteuse de Sphaerotilus natans

    No full text
    International audienceSphaerotilus natans is a neutrophilic ironrelated sheath-forming filamentous microorganism that presents dual morphotype: single cells and ensheathed cells forming filaments. As S. natans has been proposed as a sorbent for inorganic pollutants and it is occasionally involved in bulking episodes, elucidating factors affecting its filamentous growth is of crucial interest. The purpose of this work was to evaluate the effect of dissolved oxygen (DO) as a factor affecting S. natans filamentation from single cells. A method to quantify S. natans in its filamentous and single-cell morphotypes, based on a differential filtration procedure coupled with quantitative real-time PCR, was developed here. Scanning Electron Microscopy was used to validate the filtration step. Under actively aerated conditions (DO maintained at 7.6 ± 0.1 mg / L), S. natans grew mainly as single cells throughout the experiment, while a depletion in DO concentration (to ~3 mg / L) induced its filamentous growth. Indeed, when oxygen was reduced the proportion of single cells diminished from 83.3 ± 5.9 to 14.3 ± 3.4 % while the filaments increased from 16.7 ± 5.9 to 85.7 ± 3.4 %. Our results suggest that oxygen plays a key role in S. natans filamentation and contribute to better understanding of the filamentous proliferation of this bacterium. In addition, the proposed method will be helpful to evaluate other factors favouring filamentous growth.Sphaerotilus natans est un micro-organisme filamenteux gainĂ© neutrophile prĂ©cipitant le fer dans sa gaine. Il prĂ©sente un double morphotype de croissance : sous forme de cellules individuelles ou de cellules gainĂ©es formant des filaments. S. natans a Ă©tĂ© proposĂ©e comme un chĂ©lateur de polluants inorganiques. Il est parfois impliquĂ© dans des Ă©pisodes de prolifĂ©rations invasives en station d'Ă©puration. La caractĂ©risation des facteurs induisant sa croissance sous forme filamenteuse revĂȘt un intĂ©rĂȘt particulier. Le but de ce travail Ă©tait d'Ă©valuer l'effet inducteur de l'oxygĂšne dissous sur la filamentation de S. natans Ă  partir de cellules dispersĂ©es. Une mĂ©thode de quantification sĂ©lective des diffĂ©rents morphotypes de S. natans, basĂ©e sur une Ă©tape de filtration diffĂ©rentielle couplĂ©e Ă  de la PCR quantitative en temps rĂ©el, a Ă©tĂ© dĂ©veloppĂ©e ici. La microscopie Ă©lectronique Ă  balayage a Ă©tĂ© utilisĂ©e pour valider l'Ă©tape de filtration. Dans des conditions d'aĂ©ration active (OD maintenu Ă  7,6 ± 0,1 mg / L), S. natans croit principalement sous forme de cellules individuelles tout au long de l'expĂ©rience, tandis qu'une diminution de la concentration OD (Ă  ~ 3 mg / L) induit une croissance filamenteuse. Lorsque la concentration d'oxygĂšne est rĂ©duite, la proportion de cellules libres diminue de 83,3% ± 5,9% Ă  14,3% ± 3,4%, tandis que les filaments passent de 16,7% ± 5,9% Ă  85,7% ± 3,4%. Nos rĂ©sultats suggĂšrent que l'oxygĂšne joue un rĂŽle clĂ© dans la filamentation de S. natans et contribue Ă  une meilleure comprĂ©hension de la prolifĂ©ration de cette bactĂ©rie filamenteuse. En outre, la mĂ©thode proposĂ©e pourra ĂȘtre utilisĂ©e pour Ă©valuer d'autres facteurs favorisant la croissance filamenteuse
    corecore