17 research outputs found

    SULT1A1 rs9282861 polymorphism-a potential modifier of efficacy of the systemic adjuvant therapy in breast cancer?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sulfotransferase 1A1 (SULT1A1) participates in the elimination of 4-hydroxy-tamoxifen (4-OH-TAM), which is one of the major active metabolites of tamoxifen (TAM). Homozygous <it>SULT1A1 </it>variant allele genotype has been associated with lower catalytic activity and thermostability of the enzyme. Previous clinical studies suggest that the <it>SULT1A1 </it>rs9282861 polymorphism may influence the survival of breast cancer patients treated with TAM in the adjuvant setting. We investigated the effect of rs9282861 genotypes on the survival of Finnish breast cancer patients treated with adjuvant chemotherapy or TAM.</p> <p>Methods</p> <p>The rs9282861 genotypes of 412 Finnish breast cancer patients with early breast cancer were identified by using PCR-RFLP method. Seventy six patients were treated with adjuvant cyclophosphamide based chemotherapy only, 65 patients received adjuvant TAM, and four patients were treated with both adjuvant chemotherapy and TAM. Overall long-term survival (OS), breast cancer specific survival (BCSS), and relapse-free survival (RFS) by rs9282861 genotypes were evaluated by the Kaplan-Meier method and Cox regression analysis.</p> <p>Results</p> <p>The multivariate analysis of 145 patients receiving either adjuvant TAM or chemotherapy showed a statistically significantly improved OS in patients with the rs9282861 homozygous variant AA genotype (hazard ratio [HR] = 0.50, 95% confidence interval [CI] = 0.29-0.88, <it>P </it>= 0.015). In the separate analyses of patients receiving only chemotherapy or adjuvant TAM, there were no statistically significant differences in survival.</p> <p>Conclusions</p> <p>In this prospective study, we observed a previously unreported association between the <it>SULT1A1 </it>rs9282861 genotype and OS of breast cancer patients treated with adjuvant chemotherapy or TAM. This novel finding suggests that the rs9282861 polymorphism modifies the long-term clinical outcome of patients receiving adjuvant TAM or chemotherapy.</p

    Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility

    Get PDF
    Several known breast cancer susceptibility genes encode proteins involved in DNA damage response (DDR) and are characterized by rare loss-of-function mutations. However, these explain less than half of the familial cases. To identify novel susceptibility factors, 39 rare truncating mutations, identified in 189 Northern Finnish hereditary breast cancer patients in parallel sequencing of 796 DDR genes, were studied for disease association. Mutation screening was performed for Northern Finnish breast cancer cases (n = 578-1565) and controls (n = 337-1228). Mutations showing potential cancer association were analyzed in additional Finnish cohorts.c.7253dupT in TEX15, encoding a DDR factor important in meiosis, associated with hereditary breast cancer (p = 0.018) and likely represents a Northern Finnish founder mutation. A deleterious c.2715 + 1G > A mutation in the Fanconi anemia gene, FANCD2, was over two times more common in the combined Finnish hereditary cohort compared to controls. A deletion (c.640_644del5) in RNF168, causative for recessive RIDDLE syndrome, had high prevalence in majority of the analyzed cohorts, but did not associate with breast cancer. In conclusion, truncating variants in TEX15 and FANCD2 are potential breast cancer risk factors, warranting further investigations in other populations. Furthermore, high frequency of RNF168 c.640_644del5 indicates the need for its testing in Finnish patients with RIDDLE syndrome symptoms.Peer reviewe

    Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility

    Get PDF
    Several known breast cancer susceptibility genes encode proteins involved in DNA damage response (DDR) and are characterized by rare loss-of-function mutations. However, these explain less than half of the familial cases. To identify novel susceptibility factors, 39 rare truncating mutations, identified in 189 Northern Finnish hereditary breast cancer patients in parallel sequencing of 796 DDR genes, were studied for disease association. Mutation screening was performed for Northern Finnish breast cancer cases (n = 578–1565) and controls (n = 337–1228). Mutations showing potential cancer association were analyzed in additional Finnish cohorts. c.7253dupT in TEX15, encoding a DDR factor important in meiosis, associated with hereditary breast cancer (p = 0.018) and likely represents a Northern Finnish founder mutation. A deleterious c.2715 + 1G > A mutation in the Fanconi anemia gene, FANCD2, was over two times more common in the combined Finnish hereditary cohort compared to controls. A deletion (c.640_644del5) in RNF168, causative for recessive RIDDLE syndrome, had high prevalence in majority of the analyzed cohorts, but did not associate with breast cancer. In conclusion, truncating variants in TEX15 and FANCD2 are potential breast cancer risk factors, warranting further investigations in other populations. Furthermore, high frequency of RNF168 c.640_644del5 indicates the need for its testing in Finnish patients with RIDDLE syndrome symptoms.</p

    E-cadherin breast tumor expression, risk factors and survival : Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium

    Get PDF
    E-cadherin (CDH1) is a putative tumor suppressor gene implicated in breast carcinogenesis. Yet, whether risk factors or survival differ by E-cadherin tumor expression is unclear. We evaluated E-cadherin tumor immunohistochemistry expression using tissue microarrays of 5,933 female invasive breast cancers from 12 studies from the Breast Cancer Consortium. H-scores were calculated and case-case odds ratios (OR) and 95% confidence intervals (CIs) were estimated using logistic regression. Survival analyses were performed using Cox regression models. All analyses were stratified by estrogen receptor (ER) status and histologic subtype. E-cadherin low cases (N = 1191, 20%) were more frequently of lobular histology, low grade, > 2 cm, and HER2-negative. Loss of E-cadherin expression (score <100) was associated with menopausal hormone use among ER-positive tumors (ever compared to never users, OR = 1.24, 95% CI = 0.97-1.59), which was stronger when we evaluated complete loss of E-cadherin (i.e. H-score = 0), OR = 1.57, 95% CI = 1.06-2.33. Breast cancer specific mortality was unrelated to E-cadherin expression in multivariable models. E-cadherin low expression is associated with lobular histology, tumor characteristics and menopausal hormone use, with no evidence of an association with breast cancer specific survival. These data support loss of E-cadherin expression as an important marker of tumor subtypes.Peer reviewe

    Genome-wide association study of germline variants and breast cancer-specific mortality

    Get PDF
    BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10

    BCSS in multivariate analysis (Cox regression).

    No full text
    <p>A, rs12151195; B, rs12461158; C, rs2276205; D, rs3814903; E, rs2399403 genotypes; and F, combined risk allele variable. Age, tumor grade, histological type, tumor size, nodal status, ER status, and HER2 status were included in the multivariate analysis. <i>P</i>≤0.05 was considered significant.</p

    Breast cancer–associated SNP genotypes in invasive breast cancer cases and controls.

    No full text
    a<p><i>P</i> (Trend); <i>P</i> value from the Armitage trend test for the overall association with invasive breast cancer risk.</p>b<p><i>P</i>, OR and CI for the homozygous allele carriers.</p>c<p><i>P</i>, OR and CI for the homozygous and heterozygous allele carriers.</p><p>Significant <i>P</i> values bolded.</p
    corecore