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ABSTRACT 
 
Breast cancer is the most common cancer suffered by women all around the world. The 
cornerstone of breast cancer treatment is surgery.  However, despite radical surgical 
treatment, recurrence of the disease occurs in some patients. The adjuvant treatments for 
breast cancer, e.g. postoperative radiotherapy and medical treatments aim to abolish 
microscopic disease and decrease recurrences of breast cancer and the resulting mortality.  
    Genetic factors may influence the effectiveness of breast cancer treatments. The aim of 
this thesis was to explore single nucleotide polymorphisms (SNPs) in genes related to 
xenobiotic metabolism, oxidative stress, DNA repair and their association with the outcome 
of breast cancer in different adjuvant treatment groups.  The study involved 442 women 
who participated in the Kuopio Breast Cancer Project (KBCP) during the years 1990-1995. 
The data on survival and adjuvant treatments were merged with data on the studied 
genetic polymorphisms. Survival analyses were conducted using Kaplan-Meier statistics 
and Cox regression analysis. 
   In the first study, the sulfotransferase 1A1 (SULT1A1) rs9282861 variant AA genotype 
predicted improved overall survival (OS) in the cohort of patients treated with adjuvant 
chemotherapy or tamoxifen.  In addition, the rs9282861 variant AA genotype associated 
with inferior relapse-free survival (RFS) and OS in the analysis of untreated patients. 
    In the second study, the variant alleles of nuclear factor erythroid 2-related factor 2 (NRF) 
rs2886162, rs1962142, and rs6721961 were detected to associate with a low level of 
cytoplasmic NRF2 expression. A statistically significant increase for the risk of breast cancer 
was detected with the NRF2 rs6721961 TT, NRF2 rs2706110 AA and sulfiredoxin (SRXN1) 
rs6053666 CA and CC. The NRF2 2886162 variant AA genotype was associated with poorer 
survival in patients treated with adjuvant chemotherapy or radiotherapy. In addition, the 
analyses conducted in patients treated with postoperative radiotherapy showed that the 
SRXN1 genotypes rs6116929 GG, rs7269823 AA, and rs6085283 CC were associated with 
statistically significantly improved RFS and breast cancer specific survival (BCSS). 
    In the third study, the manganese superoxide dismutase (MnSOD) rs4880 variant GG 
genotype and the xeroderma pigmentosum group D (XPD) rs13181 variant allele C carriage 
were found to relate to poorer RFS and BCSS in tamoxifen treated patients. 
    In the fourth study, the homozygous X-ray repair cross-complementing protein 1 
(XRCC1) rs25487 variant AA genotype was observed to associate with worse BCSS in 
patients treated with either adjuvant chemotherapy or radiotherapy. Moreover, in the 
radiotherapy treated patients, this translated into a significant difference in OS.   
    In conclusion, the polymorphisms in the genes related to mechanisms of action of cancer 
therapies may modify the individual response and thus influence the patient outcome. 

National Library of Medicine Classification: WP 870, QU 475, QU 500, QZ 180, QZ 269 
Medical Subject Headings: Breast Neoplasms; Chemotherapy, Adjuvant; DNA Repair; Genotype; Metabolism; 
Oxidative Stress; Polymorphism, Genetic; Survival Analysis; Radiotherapy; Recurrence; Tamoxifen 
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TIIVISTELMÄ 
 
Rintasyöpä on maailmanlaajuisesti naisten yleisin syöpä. Paikallisen rintasyövän hoidon 
kulmakivi on leikkaushoito. Rintasyövän radikaalista leikkauksesta huolimatta sairaus 
uusii osalla potilaista. Liitännäishoidoilla eli postoperatiivisella sädehoidolla ja 
lääkehoidoilla pyritään tuhoamaan mikroskooppiset syöpäpesäkkeet ja näin vähentämään 
syövän uusimisriskiä ja rintasyöpäkuolleisuutta.  
    Perinnölliset tekijät saattavat vaikuttaa rintasyöpäriskiin sekä rintasyövän hoidon 
tehoon. Tämän väitöskirjan tavoitteena oli selvittää vierasainemetaboliaan, oksidatiiviseen 
stressiin ja DNA:n korjausmekanismeihin liittyvien geenien yksittäisten emästen 
monimuotoisuuden eli polymorfismin vaikutusta rintasyövän ennusteeseen eri 
liitännäishoitoryhmissä. Tutkimuksen kohteena oli 442 naista, jotka osallistuivat Kuopion 
Rintasyöpäprojektiin vuosina 1990–1995. Potilaiden elossaolo- ja hoitotiedot yhdistettiin 
tutkittavien geenien polymorfismitietoihin, ja elossaoloanalyyseissä käytettiin Kaplan-
Meierin menetelmää sekä Coxin regressioanalyysiä. 
    Ensimmäisessä osatyössä havaittiin yhdistetyssä solunsalpaaja- tai tamoksifeenihoitoa 
saaneiden potilaiden kohortissa tilastollisesti merkitsevästi pidempi kokonaiselossaoloaika 
homotsygootin SULT1A1 rs9282861 variantin genotyypin (AA) kantajilla. Lisäksi rs9282861 
genotyyppi AA liittyi huonompaan tautivapaaseen elossaoloon ja kokonaiselossaoloon 
potilailla, jotka eivät saaneet mitään liitännäishoitoja. 
    Toisessa osatyössä todettiin, että NRF2:n variantit alleelit rs2886162, rs1962142 ja 
rs6721961 liittyivät matalaan sytoplasmiseen NRF2:n ekspressioon. Tilastollisesti kasvanut 
rintasyöpäriski todettiin genotyypeissä NRF2 rs6721961 TT, NRF2 rs2706110 AA sekä 
SRXN1 rs6053666 CC ja CT.  Homotsygootti NRF2 rs2886162 variantti genotyyppi (AA) 
liittyi huonompaan ennusteeseen solunsalpaaja- tai sädehoitoa saaneilla potilailla. Lisäksi 
sädehoidetuilla potilailla SRXN1:n genotyypit rs6116929 GG, rs7269823 AA ja rs6085283 CC 
olivat yhteydessä pidempään tautivapaaseen ja tautispesifiseen elossaoloon.  
    Kolmannessa osatyössä havaittiin, että tamoksifeenihoidetuilla potilailla homotsygootti 
MnSOD rs4880 variantti genotyyppi (GG) ja XPD rs13181 variantti alleeli C:n kantajuus 
liittyivät huonompaan tautivapaaseen ja tautispesifiseen elossaoloon.  
    Neljännessä osatyössä todettiin homotsygootin XRCC1 rs25487 variantin genotyypin 
(AA) olevan yhteydessä huonompaan tautispesifiseen elossaoloon solunsalpaajahoitoa tai 
sädehoitoa liitännäishoitona saaneilla potilailla. Lisäksi sädehoidetuilla potilailla havaittiin 
merkitsevä ero kokonaiselossaolossa.   
    Yhteenvetona voidaan todeta, että syöpähoitojen vaikutusmekanismeihin liittyvien 
geenien monimuotoisuus saattaa muokata yksilöllistä vastetta hoitoihin ja vaikuttaa siten 
potilaiden ennusteeseen.  
     
Luokitus: WP 870, QU 475, QU 500, QZ 180, QZ 269 
Yleinen Suomalainen asiasanasto: rintasyöpä; ennusteet; liitännäishoito; geneettinen muuntelu; oksidatiivinen 
stressi; DNA; korjaus; lääkehoito; sytostaattihoito; sädehoito 
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1 Introduction  

Breast cancer poses a substantial burden to all societies: approximately 1.7 million women 
worldwide are diagnosed with breast cancer every year. In addition, over 500,000 women 
die every year from breast cancer. The primary curative treatment and staging of early 
breast cancer comprises breast-conserving surgery or mastectomy and sentinel node 
biopsy (SNB) or axillary evacuation. The majority of patients are treated postoperatively 
with adjuvant therapies, e.g. radiotherapy, chemotherapy, hormone therapy, and targeted 
therapies. The ultimate goal of adjuvant treatments is to eradicate microscopic residual 
disease, to prevent relapses, and thus to increase breast cancer specific survival (BCSS) and 
overall survival (OS). However, these adjuvant treatment modalities may reduce the 
quality of life and cause serious acute and late adverse effects including febrile 
neutropenia, pulmonary, cardiac, and thromboembolic complications, and even secondary 
malignancies (Early Breast Cancer Trialists’ Collaborative Group [EBCTCG], 1998; 
Deitcher and Gomes, 2004; Senkus-Konefka and Jassem, 2007; Yi et al., 2009; Rayson et al., 
2012). 
    Despite the convincing evidence that adjuvant treatments significantly improve the 
prognosis of breast cancer sufferers, all too many patients experience a recurrence of their 
disease. In Finland, for example, the five-year and twenty-year up-to-date estimates of 
relative survival from breast cancer at the time of this study were 83.4 % and 61.8 %, 
respectively (Brenner and Hakulinen, 2001). Nowadays, the relative five-year survival is 
90 % (Finnish Cancer Registry). There is growing evidence that interindividual genetic 
diversity may partly explain these patterns in survival and as well as the differences in 
response to adjuvant treatments (Yu et al., 2012a; Jamshidi et al., 2013; Seibold et al., 2013). 
Therefore, it would be of great importance to identify predictive factors in order to find 
the most appropriate and effective treatment for each individual patient.  
    A single nucleotide polymorphism (SNP) is the most common type of genetic variation. 
An SNP occurs when a single nucleotide is substituted by another in the deoxyribonucleic 
acid (DNA) sequence. If this takes place in a coding region or in a regulatory area near a 
gene, SNPs may alter also the expression of proteins and modify the response to both 
internal and external pathogens and chemicals, including cancer treatments. SNPs have 
also been associated with increased susceptibility to breast cancer (Garcia-Closas et al., 
2008). Genetic variation has earlier been related to survival differences in breast cancer 
patients receiving adjuvant therapies (Nowell et al., 2002; Ambrosone et al., 2005; Jaremko 
et al., 2007). The identification of more accurate markers of an increased risk of recurrence 
as well as better prediction of response to therapy might assist in allocating the optimal 
adjuvant treatments to those patients that would most likely receive a real benefit. The 
other side of the coin would be that certain patients could be spared from ineffectual and 
potentially harmful therapies.  
    The present work investigated the predictive value of polymorphisms in genes known 
to be involved in the response to the DNA damage and drug metabolism, namely 
sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD), xeroderma 
pigmentosum group D (XPD), X-ray repair cross-complementing protein 1 (XRCC1), 
nuclear factor erythroid 2-related factor 2 (NRF2), and sulfiredoxin (SRXN1). The influence 
of selected SNPs in the aforementioned genes on breast cancer outcome was analyzed in a 
cohort of Finnish women with local breast cancer. The survival differences were studied in 
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the total study population as well as subdivided according to the adjuvant treatments the 
patients received. In addition, the association of NRF2 and SRXN1 SNPs with the breast 
cancer risk was evaluated. 
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2 Review of the literature 

2.1 BREAST CANCER  
2.1.1 Epidemiology  
Breast cancer is the most common cancer in females with nearly 1.7 million new cases 
globally occurring in 2012 (http://www.cancerresearchuk.org/cancer-info/cancerstats/). 
The global differences in incidence are nearly four-fold. The lowest rate is in Central 
Africa, 27 cases per 100, 000, whereas in Western Europe the rate is 96 per 100,000 (Bray et 
al., 2013). In 2013, 4831 Finnish women were diagnosed with breast cancer (Finnish Cancer 
Registry). 

2.1.2 Etiology  
Innumerable studies have been conducted to elucidate the molecular and cellular 
mechanisms leading to carcinogenesis. Estrogens and progesterone have a significant role 
on the growth and differentiation of several tissues and organs, including the mammary 
gland (Ceriani et al., 1972; Brisken et al., 1998). Exogenous estrogen has been demonstrated 
to induce breast cancer in rodents (Noble et al., 1975; Highman et al., 1980). The concept 
that the development of breast cancer is often dependent on the action of steroidal sex 
hormones is further supported by the observation that oophorectomy is associated with 
improved recurrence-free survival and OS in patients with early breast cancer (EBCTCG, 
1996). In addition, the incidence of breast cancer can be reduced by blocking the action of 
estrogen with tamoxifen or aromatase inhibitors (AIs) (Cuzick et al., 2007; Goss et al., 
2011).  
    One of the major pathways for hormone mediated carcinogenesis is the nuclear estrogen 
receptor (ER)-mediated signaling that enhances cell proliferation, thus leading to an 
increased risk of mutations in genes associated with tumour suppression, DNA repair, 
oncogene, and endocrine functions. There are also nongenomic, 17β-estradiol-initiated 
pathways, which after exposure to estradiol rapidly activate signaling molecules such as 
insulin-like growth factor receptor 1 (IGF-1R), epidermal growth factor receptor (EGFR), 
and mitogen-activated protein kinase (MAPK) (Migliaccio et al., 1996; Filardo et al., 2000; 
Kahlert et al., 2000). A third potential mechanism in the carcinogenesis of the mammary 
gland has been postulated to be attributable to the genotoxic effects of cytochrome P450 
(CYP450) mediated estrogen metabolism. The metabolic oxidation of estrogen leads to the 
formation of estrogen-catechol complexes; these then produce electrophilic estrogen o-
quinones and reactive oxygen species (ROS), which can generate DNA lesions (Zhang et 
al., 1999; Chen et al., 2000). 
    The factors related to lifelong exposure to estrogen, i.e. early age at menarche, late age at 
first birth, nulliparity, no or little breast feeding, and late age at menopause, are associated 
with elevated risk of breast cancer (Hsieh et al., 1990; Collaborative Group on Hormonal 
Factors in Breast Cancer [CGHFBC], 2002; Garcia-Closas et al., 2006). Moreover, higher 
levels of endogenous estrogen, testosterone, and prolactin have been linked with an 
increased risk (Key et al., 2002; Tworoger et al., 2007). The use of hormonal contraceptives 
has been associated with an increased risk for breast cancer (CGHFBC, 1996; Gierisch et 
al., 2013; Soini et al., 2014). In patients with the breast cancer gene 1 (BRCA1) mutation, the 
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use of oral contraceptives before the age of 25 has been shown to increase the risk of early-
onset breast cancer (Kotsopoulos et al., 2014). Furthermore, the use of hormone 
replacement therapy (HRT) was associated with an increased risk of breast cancer (Beral 
and Million Women Study Collaborators, 2003). This risk seemed to be associated with the 
duration of HRT and the time since cessation of HRT (CGHFBC, 1997; Beral and Million 
Women Study Collaborators, 2003). Five years or more after discontinuing HRT use there 
did not seem to be any excess breast cancer risk (CGHFBC, 1997). 
    The density of the breast tissue is also a risk factor: the risk is elevated up to four-fold in 
females with more dense breast tissue (McCormack and dos Santos Silva, 2006). In 
addition, women with a previous history of breast cancer (Colzani et al., 2014) or a clear 
family history of this disease are at an increased risk (Pharoah et al., 1997). For the carriers 
of certain high-risk susceptibility genes, BRCA1 and BRCA2, the life-time risk of breast 
cancer has been estimated to be 45-85 % (Antoniou et al., 2003; King et al., 2003). In 
addition, hereditary syndromes like Cowden disease and Li-Fraumeni which are caused 
by mutations in the phosphatase and tensin homolog gene (PTEN), and tumor protein p53 
(TP53), respectively, have been found to be associated with a high genetic predisposition 
to breast malignancy (Frebourg et al., 1995; Liaw et al., 1997). Moderate-penetrance breast 
cancer susceptibility genes such as checkpoint kinase 2 (CHEK2), ataxia telangiectasia 
mutated gene (ATM), and partner and localizer of BRCA2 (PALB2) confer a modestly 
increased risk for breast cancer (Meijers-Heijboer et al., 2002; Bernstein et al., 2006; Erkko 
et al., 2007).   
    The risk for breast cancer increases with age, and the incidence of breast cancer is higher 
in women with high socioeconomic status (Braaten et al., 2004). There are also racial 
differences in the incidence and mortality of breast cancer, with African-American women 
having a worse prognosis than white women (Silber et al., 2013). Alcohol consumption 
(Zhang et al., 2007) and a previous history of chest irradiation are also risk factors for 
breast cancer (Travis et al., 2003), whereas physical exercise has been shown to reduce the 
risk (Steindorf et al., 2013). Several studies have reported a significant association between 
elevated body mass index (BMI) and the risk of breast cancer (Cecchini et al., 2012; Gaudet 
et al., 2014). In addition, some breast cancers may arise in a setting of random mutations.  
 
2.1.3 Clinical features 
The most common symptom of breast cancer is a lump in the breast or axilla. Other 
symptoms are changes in the size and density of the breast, local pain, retraction of the 
nipple, rash and ulceration of the skin, and discharge from the nipple. Those patients who 
present with an advanced disease may complain of skeletal pain, dyspnea, and 
neurological symptoms caused by distant metastases. 
 
2.1.4 Diagnosis 
The diagnosis of breast cancer is based on the so-called triple assessment including clinical 
examination, radiological evaluation and pathological assessment by needle biopsy 
(Senkus et al., 2013). A diagnostic mammography remains the primary tool for 
radiological imaging of the breast, complemented by ultrasound for the evaluation of the 
axillary nodes. Preoperative magnetic resonance imaging (MRI) is recommended in cases 
where there is a discrepancy between the clinical examination and findings in the 
mammogram or ultrasound, if the breast density hinders reliable mammogram 
interpretation, or in cases with lobular carcinoma planned to be operated by resection 
(Sardanelli et al., 2010). A substantial proportion of breast cancer cases are detected by 
screening mammography (Miller et al., 2014). In 2012, 34 % of new breast cancer cases in 
Finland had been detected by screening mammography (Finnish Cancer Registry). 
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2.1.5 Pathology 
 
2.1.5.1 Histopathology 
The histopathologic classification of breast cancer is based on the morphological features 
of the tumour (WHO Classification of Tumours, Volume 4). Approximately 80 % of breast 
cancers are of ductal or lobular origin (Sihto et al., 2008). There are also less common 
tumour subtypes such as mucinous, tubular, medullary, or papillary carcinoma.  
 
2.1.5.2 Histological grade and Ki-67  
The widely used histologic grading system of breast tumours, Nottingham Grading 
System, is based on the assessment of three morphological features: First, the degree of 
gland formation, second, nuclear pleomorphism, and third, mitotic activity (Elston and 
Ellis, 1991). Grade is divided into three classes: grade 1 represents well differentiated (low 
grade) cells; grade 2 is associated with moderately differentiated (intermediate grade) 
cells, and grade 3 features poorly differentiated (high grade) cells. In addition, the 
proliferative fraction can be assessed by immunohistochemical staining of the Ki-67 
antigen. There is some controversy about which value represents the reliable cut-off points 
for low and high values for Ki-67, however, often the “low” value for Ki-67 is considered 
as a level of <14% (Cheang et al., 2009).  
 
2.1.5.3 Hormone receptors 
Estrogen and progesterone receptors (PRs) are examined with immunohistochemical 
staining. The threshold for receptor positivity has been lowered to tumours containing 1 % 
or more of immunoreactive cells (Goldhirsch et al., 2009).  
 
2.1.5.4 Novel molecular classification of breast cancer 
The molecular classification of breast cancer with a hierarchical clustering analysis of gene 
expression profiling has revealed the heterogeneity of breast cancer (Perou et al., 2000; 
Sorlie et al., 2003). The molecularly defined subtypes, luminal A, luminal B, human 
epidermal growth factor receptor 2 (HER2)-enriched, and basal, have been demonstrated 
to be of both prognostic and predictive value and have therapeutic implications (Coates et 
al., 2015). It has been shown that there is concordance between classification defined by 
molecular evaluation of genetic subtype and traditional immunohistochemical markers 
ER, PR, HER2, and Ki-67 (Fan et al., 2006). Nowadays, tumours are recommended to be 
grouped into surrogate intrinsic subtypes for prognostication and treatment decisions 
(Table 1). However, these subtypes and markers do not overlap completely. For example, 
not all basal-like cancers fall within the classification of triple negativity (Banerjee et al., 
2006). 
    Approximately 40 % of tumours are of Luminal A type. HER2 gene amplification or 
over-expression is found in approximately 10 % of luminal B tumours (Cheang et al., 
2009). Luminal A tumours tend to have a lower histological grade than luminal B tumours 
(Engstrom et al., 2013).  Approximately 15 % of breast cancers are HER2 enriched with a 
high expression of HER2, and they are likely to present with high grade and node 
positivity (Pathmanathan et al., 2012). Tumours of the basal subtype are often triple 
negative with neither hormone receptors nor HER2 overexpression, and they may display 
a high expression of basal keratins (Perou et al., 2000). BRCA1 associated breast cancer is 
often basal-like (Laakso et al., 2005). 
        A novel strategy to combat cancer involves the DNA sequencing of the tumour. One 
of the major goals of next generation sequencing (NGS) is to offer broad personalized 
genomic data which can help in clinical decision-making. Breast cancer is a highly 
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heterogeneous disease and the individual germline and somatic mutations may affect the 
prognosis and the treatment. The first report of sequencing of the breast cancer genome 
sequencing appeared in 2009 (Shah et al., 2009). In breast cancer, there are already several 
actionable mutations that permit targeted therapies including poly(ADP-
ribose)polymerase (PARP) inhibitors, Janus kinase (JAK1) inhibitor ruxolitinib, 
mammalian target of rapamycin (mTOR) inhibitor everolimus, v-akt murine thymoma 
viral oncogene homolog 1 (AKT1) inhibitor MK-2206, and fibroblast growth factor 
receptor 1 (FGFR1) (Fong et al., 2009; Crown et al., 2012; Andre et al., 2014; Piccart et al., 
2014).  
    However, there are several challenges in implementing NGS profiling into clinical 
practice. There may be significant genetic variation between the primary tumour and the 
metastases as well as between the metastases in different sites. Furthermore, more 
knowledge is needed to assess the causative and functional role of specific mutations. At 
the moment, genomic testing is usually performed with a limited approach, directed at the 
specific alterations which can be targeted by the approved drugs whereas NGS is mainly 
applied in the trial settings. 
 
Table 1. Surrogate definitions of intrinsic subtypes of breast cancer. ER, estrogen receptor; 
HER2, human epidermal growth factor receptor 2; PR, progesterone receptor. Modified from 
Maisonneuve et al., 2014 and Coates et al., 2015. 
  
Intrinsic subtype Clinicopathologic surrogate definition 

Luminal A 'Luminal A-like' 

 
  ER+, HER2-, Ki-67 < 14 % or ER+, HER2-, PR ≥ 20 %, Ki-67 14-19 % 

  Luminal B 'Luminal B-like (HER2-negative)' 

 
  ER+, HER2-, Ki-67 ≥ 20 % or ER+, HER2-, PR< 20 %, Ki-67 14-19 % 

  

 
'Luminal B-like (HER2-positive)' 

 
  ER+, HER2+, any PR, any Ki-67  

  HER2 overexpression 'HER2-positive (non-luminal)' 

 
  ER-, PR-, HER2+ 

  'Basal-like' 'Triple-negative' 

    ER-, PR-, HER2- 
 
2.1.6 Staging 
Staging of breast cancer is based on the UICC TNM-classification which describes the size 
of the tumour (T), lymph node involvement (N), and presence of distant metastasis (M). T 
and N are assessed in the pathological examination of a surgical specimen. Asymptomatic 
distant metastases are infrequent. In our Kuopio Breast Cancer Project (KBCP) material, 
only 3.4 % of patients presented with distant metastases at the time of breast cancer 
diagnosis. Radiological staging with thoracic X-ray, an abdominal ultrasound, and a bone 
scan or body computed tomography scan are recommended in patients with ≥ 4 metastatic 
axillary nodes, large tumour (T3-4) or symptoms suspicious of distant metastasis. The 
current clinical classification and stage grouping are depicted in Table 2.  
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Table 2. International pTNM pathologic classification and staging of breast tumours 
 

Primary tumour (T) 

TX    Primary tumour cannot be assessed 
 T0    No evidence of primary tumour 
 Tis    Carcinoma in situ 
 T1a  Tumour  > 1 mm but ≤ 5 mm in greatest dimension  
 T1b  Tumour < 5 mm but ≤ 10 mm in greatest dimension 
 T1c  Tumour > 10 mm but ≤ 20 mm in greatest dimension 
 T2    Tumour > 20 mm but ≤ 50 mm in greatest dimension 

T3    Tumour >  50 mm in greatest dimension 
 T4    Tumour of any size with direct extension to chest wall and/or to skin 

  Regional lymph nodes (N)   

NX    Regional lymph nodes cannot be assessed 
 N0    No regional lymph node metastasis 
 N1    Micrometastases or metastasis in 1-3 axillary or internal mammary lymph nodes 

N2    Metastasis in 4-9 axillary or internal mammary lymph nodes 

N3    Metastasis in ≥ 10 axillary lymph nodes or in infraclavicular or ipsilateral 

        supraclavicular lymph nodes 

 Distant metastasis (M) 

M0    No distant metastasis 

M1    Distant metastasis 
   

     Stage grouping       
Stage 0 Tis N0 M0 

 Stage IA T1 N0 M0 
 Stage IB T0, T1 N1mi M0 
 Stage IIA T0, T1 N1 M0 
 

 T2 N0 M0 
 Stage IIB T2 N1 M0 
 

 T3 N0 M0 
 Stage IIIA T0, T1, T2 N2 M0 
 

 T3 N1,N2 M0 
 Stage IIIB T4 N0, N1, N2 M0 
 Stage IIIC Any T N3 M0 
 Stage IV Any T Any N M1   

Modified based on TNM Classification of Malignant tumours, 7th edition, International 
Union Against Cancer, 2009. 
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2.1.7. Prognosis 
The prognosis of breast cancer depends on the histopathological and clinical variables 
including tumour stage (Jatoi et al., 1999; Elkin et al., 2005), age, (Host and Lund, 1986; 
Kroman et al., 2000) and comorbidities (Land et al., 2012). In addition, histopathological 
and molecular features such as grade (Rakha et al., 2008), Ki-67 (de Azambuja et al., 2007), 
HER2 overexpression (Slamon et al., 1987; Ross and Fletcher, 1998), and lymphovascular 
invasion (Lee et al., 2006; Song et al., 2011) have an influence on the outcome. The effect of 
hormone receptor status seems to vary over time. During the first five years after 
diagnosis, those patients with ER positive (ER+) disease have a smaller risk of recurrence 
than patients with ER negative (ER-) breast cancer, but subsequently, i.e. 5-9 years from 
diagnosis the risk becomes higher in the ER+ population (Bentzon et al., 2008; Yu et al., 
2012b).  
    It has also been noted that the histological type of breast cancer may associate with the 
prognosis. For example, tubular and cribriform carcinomas often have a favorable 
outcome (Colleoni et al., 2012), whereas metaplastic carcinomas tend to behave 
aggressively (Bae et al., 2011). Molecular subtyping with gene expression profiles also 
offers prognostic information (Wirapati et al., 2008). The poorest survival is found in basal 
and HER2 enriched subtypes, whereas the luminal A subtype has the most favourable 
outcome. Multi-gene assays such as Oncotype DX (Genomic Health) and Mammaprint 
(Agendia) have been developed to assist in tailoring treatments to each individual patient, 
mainly aiming to avoid chemotherapy in ER-positive breast cancer subjects. Their role in 
routine practice will become clearer when the results of ongoing prospective trials are 
published. 
 
2.1.8 Treatment strategies of breast cancer 
The primary treatment of choice for breast cancer is surgery, either breast-conserving 
surgery or mastectomy. For patients operated with mastectomy, immediate or delayed 
breast reconstruction should be available. In addition, some axillary nodes or all nodes are 
removed by sentinel node biopsy or axillary node dissection in order to investigate the 
nodal involvement (Senkus et al., 2013). 
    Moreover, the majority of the patients are allocated to adjuvant therapy, e.g. 
chemotherapy, postoperative radiotherapy, hormone therapy, or targeted therapy. The 
purpose of the adjuvant therapies is to eradicate microscopic residual disease and 
ultimately to improve relapse-free survival (RFS), BCSS, and OS. The established clinical 
or biological characteristics that predict the response to adjuvant therapies, i.e. predictive 
factors, include age, tumour size, axillary node status, tumour grade, and comorbidities 
(Ravdin et al., 2001; Land et al., 2012).  
   Furthermore, hormone receptors and HER2 amplification are factors that predict the 
response to hormonal therapies and anti-HER2 drugs, respectively. Traditionally, breast 
cancer has been divided into three main classes according to ER and PR status, i.e. highly 
endocrine responsive, those not endocrine responsive, and those with uncertain endocrine 
responsiveness.  
    The molecular profiling of breast cancer with genomic expression analyses has created a 
new classification of breast cancer subtypes which is described in the chapter 2.1.5.4. 
(Perou et al., 2000). Due to the uneven access to genomic profiling, the cost of these 
analyses, and variability in the current levels of evidence, it has been suggested that 
hormone receptors, HER2 status, and Ki-67 could act as surrogate markers for intrinsic 
subtypes of breast cancer, and be applied in choosing the most appropriate adjuvant 
therapies (Senkus et al., 2015). 
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    At the moment, patients with ER and/or PR-positive breast cancer are treated with 
adjuvant hormone therapy with a minimum duration of 5 years. For premenopausal 
patients, the drug of choice has traditionally been tamoxifen (Goldhirsch et al., 2013). 
However, recent results suggest that suppression of ovarian function combined with 
either tamoxifen or an AI may be an option for young premenopausal patients (Pagani et 
al., 2014; Francis et al., 2015).  
    In postmenopausal patients, the choice can be made between tamoxifen or an AI. 
Tamoxifen and AI can also be used sequentially, 2-3 years of each for a total of five years. 
After 5 years of tamoxifen therapy, it is recommended to continue hormonal treatment 
beyond 5 years in cases of nodal positivity (Coates et al., 2015).  
    Patients with breast cancer overexpressing HER2 benefit from adjuvant trastuzumab 
therapy (Dahabreh et al., 2008). The St Gallen International Expert Consensus in 2015 
recommended adjuvant chemotherapy for patients with grade 3 tumours, high Ki-67, low 
hormone receptor staining, extensive lymphovascular invasion, HER2 overexpression, 
triple negativity, more than three positive nodes, and a high-risk grouping in gene 
profiling tests (Coates et al., 2015).  

2.2 GENETIC VARIATION 

2.2.1 Definition of genetic polymorphism 
The genetic code for producing proteins in living organisms resides in the DNA, packed in 
codons formed by three nucleotides. A nucleotide consists of a five-carbon sugar, one or 
more phosphate groups and a nucleobase. The nucleobases are divided into two groups: 
the purines, adenosine (A) and cytosine (C), and the pyrimidines, thymine (T) and 
guanine (G). Each sequence of the three nucleotides specifies a single amino acid. Since 
there are 64 different possible codons and only 20 different amino acids, some amino acids 
are coded by several different codons. In addition, there are specific start and stop codons 
that signal the initiation and termination of translation. 
    Mutations result from random changes in the sequence of base pairs in the DNA. These 
changes include substitution of a single base pair, insertion, deletions, or relocation of a 
segment of base pairs. The substitution, insertion, or deletion of a single base is also called 
a point mutation.   
    The most common form of genetic variation among humans is a single nucleotide 
polymorphism, SNP, where one single nucleotide is substituted by another. The more 
frequent form is usually referred to as a common or wild type allele, and the more 
uncommon allele is assigned as the uncommon or variant allele. By definition, a SNP is a 
genetic allelic variation that is present in ≥ 1 % of the population (Brookes, 1999). Thus, a 
point mutation presenting with a smaller frequency is not considered a SNP. According to 
the NCBI dbSNP Build 146 database updated in November 2015, approximately 32 million 
SNPs exist in the human genome. The frequency of a particular SNP may differ between 
populations, however within a population, the frequency tends to remain unchanged.  

2.2.2 Tagging SNP 
Two loci are in linkage equilibrium (LE) when they are inherited independently. If their 
inheritance is a non-random event, the loci are said to be in linkage disequilibrium (LD). A 
group of alleles of different loci on a single chromosome in high LD is called a haplotype. 
A haplotype can be recognized by a representative SNP, termed a tagging SNP (tagSNP). 
This enables identifying genetic variation without genotyping every SNP in a 
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chromosomal region. Haplotypes and patterns of LD may vary between different 
populations, and this should be taken into account when performing association studies 
and selecting tagSNPS (Teo and Sim, 2010). There are several methods for haplotype and 
tagSNP selection (Hung et al., 2015). 

2.2.3 Effects of SNPs 
Currently the specific functional impact remains undetermined for the majority of the 
SNPs. However, several SNPs have been shown to cause functional changes in vitro or in 
vivo. A SNP may occur in a coding region of a gene, in the non-coding sequence of a gene, 
or in the area between genes. A synonymous SNP produces the same polypeptide 
sequence.  Non-synonymous SNPs are of two types: missense or nonsense. A missense 
change generates a distinct amino acid, whereas a nonsense change leads to a termination 
codon and a prematurely abbreviated protein. SNPs that are not within protein-coding 
regions may still affect gene splicing, transcription factor binding, messenger ribonucleic 
acid (RNA) degradation, the sequence of non-coding RNA, or other regulatory elements.  
    SNPs may lead to altered stability or function of the proteins for which they code. These 
changes may modulate susceptibility to diseases and exert an influence on the drug 
metabolism and response towards internal and external agents including pathogens, 
xenobiotics, and radiation. The efficacy of cancer therapies depends on several genetic and 
non-genetic factors, and distinct SNPs may make their own contribution, either negatively 
or positively, to the outcome. The field of pharmacogenomics studies investigates how 
genetics influences drug metabolism and regulates the absorption, distribution, and 
excretion of pharmaceutical compounds.  
    There are also several studies suggesting that polymorphisms may lead to altered 
efficiency of cancer treatments or increase the risk of adverse effects, such as neuropathy 
and myelosuppression (Azzato et al., 2010; Baldwin et al., 2012; Custodio et al., 2014; 
Tulsyan et al., 2014). 

2.3 TAMOXIFEN 

2.3.1 Mechanism of action 
Tamoxifen is a selective estrogen receptor modulator (SERM) that has been used in the 
treatment of breast cancer for decades (Cosman and Lindsay, 1999). There are two types of 
estrogen receptors: ERα and ERβ. The human ERα gene codes for a 595 amino acid protein 
composed of six domains (Kumar et al., 1987), whereas the human ERβ is 530 amino acids 
long (Ogawa et al., 1998a). ERs are ligand-activated transcription factors and members of 
the family of nuclear receptors, which regulate the transcription of their target genes.        
    ERα is considered to be the main target for endocrine breast cancer therapies, whereas 
the role of ERβ in breast cancer still remains unclear. ERβ has several isoforms 
(Mosselman et al., 1996; Ogawa et al., 1998b), which have been studied principally in 
cultured cell lines and animal models. The putative proapoptotic and antiproliferative 
properties of ERβ have been difficult to elucidate, perhaps because the presence or absence 
of ERα seems to influence the function of ERβ (Tonetti et al., 2003; Paruthiyil et al., 2004). 
The current ER testing in breast cancer is based on the expression of the ERα. 
    As a SERM, tamoxifen has distinct, tissue-specific effects. In breast tissue tamoxifen acts 
as an antiestrogen but behaves as an agonist in the uterus and bone. The cellular responses 
to SERMs are determined by the cell type- and promoter-specific factors, as well as the 
availability of co-activators and co-repressors (Shang and Brown, 2002). Tamoxifen 



11 
 

 

competitively inhibits the binding of estrogen to the ER and evokes a reversible blockade 
at the G1 phase, thus slowing cell proliferation (Osborne et al., 1984). Tamoxifen causes 
disturbance in the ligand-binding domain of ER, resulting in an abnormal conformation of 
the receptor and disrupting the binding of the coactivators to the domain (Shiau et al., 
1998). Co-repressor molecules are subsequently enrolled to the receptor and these 
maintain the receptor in an inactive form (Shibata et al., 1997). 
    Originally, the therapeutic action of tamoxifen was thought to be mediated solely by 
blocking the binding of estrogen to the ER. Interestingly, tamoxifen has been associated 
with antitumour activity also in cancers not expressing ERs, including ovarian, pancreatic, 
and breast cancer, malignant glioma, and melanoma (Gelmann, 1997). There are several 
mechanisms which may be involved with this ER-independent antitumour activity of 
tamoxifen: up-regulation of c-myc expression (Kang et al., 1996), inhibition of protein 
kinase C (PKC) (O'Brian et al., 1985), and secretion of IGF-1 (Huff et al., 1988), reduction in 
plasma levels of IGF-1 (Corsello et al., 1998), calcium channel blocking activity (Lopes et 
al., 1990), or ROS-associated apoptosis.  
    Tamoxifen increases ROS production and induces apoptosis in ER negative T-leukaemic 
Jurkat and ovarian cancer cells in vitro (Ferlini et al., 1999). However, in another in vitro 
experiment tamoxifen was found to stimulate ROS formation only in the ER+ cell lines 
(Razandi et al., 2013). Tamoxifen was shown to be genotoxic in ER+ MCF-7 cells by 
generating oxidized purines and pyrimidines through the production of ROS (Wozniak et 
al., 2007). Tamoxifen may also promote cellular senescence by ROS production as well as 
stabilizing tumour suppressor protein p53 (Lee et al., 2014). 
 
2.3.2 Metabolism of tamoxifen  
Tamoxifen is converted via a cytochrome P450 (CYP) pathway into a series of compounds 
that bind with varying affinities to the ER. The primary phase I metabolites are 4-hydroxy-
tamoxifen (4-OH-TAM), N-desmethyl-tamoxifen (ND-TAM), and 4-hydroxy-N-
desmethyl-tamoxifen (endoxifen). The N-demethylation of tamoxifen is mainly catalyzed 
by cytochrome CYPA4 and CYP3A5, whereas 4-hydroxylation of tamoxifen takes place 
predominantly via the CYP2D6 enzyme (Desta et al., 2004).  4-OH-TAM and ND-TAM are 
further converted into endoxifen by CYP3A4 and CYP2D6, respectively (Stearns et al., 
2003) (Figure 1). Endoxifen and 4-OH-TAM are the most potent metabolites of tamoxifen, 
with endoxifen being present at greater concentrations than 4-OH-TAM (Lim et al., 2005).    
    The effect of tamoxifen is not only dependent on the phase I metabolism but also on its 
phase II metabolism, namely glucuronidation and sulfation reactions. 4-OH-TAM and 
ND-TAM are conjugated by the uridine diphosphate glucuronosyltransferases (UGTs), 
whereas human SULT1A1 is mainly involved in the elimination of 4-OH-TAM (Nishiyama 
et al., 2002; Sun et al., 2007) (Figure 1). The activity of tamoxifen and its metabolites is 
modified by the coordinated actions of the several enzymes involved in this metabolic 
pathway.  
  
2.3.3 Pharmacogenomics of tamoxifen therapy   
 
2.3.3.1 CYP2D6 
There are several studies exploring the pharmacogenomics of tamoxifen, most of them 
investigating the role of the highly polymorphic enzyme CYP2D6. Based on the genotypes 
and their ability to metabolize CYP2D6 substrates there is a current division into four 
CYP2D6 phenotypes: extensive metabolisers (EMs), intermediate metabolisers (IMs), poor 
metabolisers (PMs), and ultrarapid metabolisers (UMs) (Table 3). In Caucasians, the 
frequency of PMs is approximately 3-7 % (Sachse et al., 1997; Gjerde et al., 2008). 
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Approximately 6 % of the Finnish population lack totally or have a very weak activity of 
CYP2D6 (Hirvonen et al., 1993), whereas some 1 % are in the UM category (Ingelman- 
Sundberg, 2005). It has been shown that poor metabolisers have lower serum levels of 
endoxifen (Murdter et al., 2011).  
    However, the results from the clinical studies investigating the outcome of tamoxifen 
therapy according to the allelic variants of CYP2D6 have been conflicting (Goetz et al., 
2005; Schroth et al., 2009; Rae et al., 2012; Regan et al., 2012). These discrepancies may be 
explained by differences in study populations and end points, length of follow-up, and 
DNA sources. A meta-analysis of 25 studies investigating the CYP2D6 genotype and 
breast cancer outcomes did not support the hypothesis that CYP2D6 was a predictive 
factor for tamoxifen efficacy (Lum et al., 2013). At the moment, the scientific and clinical 
communities are still debating about the relevance of CYP2D6 testing for the prediction of 
tamoxifen treatment efficacy.   
 
 
 
 
 
 

 

Figure 1. Metabolism of tamoxifen (TAM) illustrating the pathways and enzymes involved. GC, 
Glucuronide; 4-OH-TAM, 4-hydroxy-tamoxifen; SC, Sulphate conjugate; SULT1A1, 
sulfotransferase 1A1; UGT, Uridine diphosphate glucuronosyltransferase. Modified from Gjerde 
et al. 2008. 
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Table 3. CYP2D6 alleles and their predicted phenotypes. Modified from Lum et al. 2013.    

CYP2D6 alleles Predicted CYP2D6 phenotype  
>2 copies of any of the following functional alleles: *1, *2, *33, *35 Ultrarapid metabolizer (UM) 
    
2 copies of any of the following functional alleles: *1, *2, *33, *35 Extensive metabolizer (EM) 
    
2 copies of any of the following reduced function alleles: *9, *10, 

 *17, *29, *36, *41 
 

  OR 
 

  1 copy of any of the following non-functional alleles: *3, *4, *5, *6, 
 *7, *8, *11, *12, * 13, *14, *15, *16, *19, *20, *21, *38, *40, *42 AND Intermediate metabolizer (IM) 

1 copy of any of the functional alleles: *1, *2, *33, *35 
 

  OR 
 

  1 copy of any of the following non-functional alleles: *3, *4, *5, *6, 
 *7, *8, *11, *12, * 13, *14, *15, *16, *19, *20, *21, *38, *40, *42 AND 
 1 copy of any of the following reduced function alleles: *9, *10, *17, 
 *29, *36, *41   

2 copies of any of the following non-functional alleles: *3, *4, *5, Poor metabolizer (PM) 
*6, *7, *8, *11, *12, * 13, *14, *15, *16, *19, *20, *21, *38, *40*42   

 
2.3.3.2 SULT1A1 
 SULT1A1 enzyme is a member of the sulfotransferase family mainly expressed in the liver 
(Zhu et al., 1993) which sulfates exogenous phenolic compounds and endogenous estrogen 
(Falany et al., 1993; Ozawa et al., 1995). A functional polymorphism (rs9282861G>A) in 
exon 7 of SULT1A1, results in an arginine to histidine (Arg213His) amino acid change at 
position 213. The variant A allele is associated with lower catalytic activity and poorer 
thermostability compared with the wild type G allele (Raftogianis et al., 1999). Hence, it 
has been hypothesized that the elimination of 4-OH-TAM could be slower in individuals 
carrying the variant A allele and this might lead to better response. Nevertheless, clinical 
studies on patients receiving adjuvant tamoxifen have shown the opposite results (Table 
4). There are also studies showing no association between the SULT1A1 rs9282861 
genotype and the outcome of breast cancer patients.     
    Moreover, SULT1A1 is capable of generating reactive species by sulfation of N-hydroxy 
heterocyclic and aromatic amines (Williams et al., 2001) which may lead to DNA injury 
and carcinogenesis. Meta-analyses on the SULT1A1 rs9282861 and breast cancer risk have 
yielded discordant results: two meta-analyses found no overall association, while a third 
meta-analysis suggested that carrying the variant homozygous AA genotype slightly 
increased the breast cancer risk (Jiang et al., 2010; Wang et al., 2010; Lee et al., 2012). In a 
case-control study this effect was synergistically increased by a high intake of smoked 
meat (Lee et al., 2012). The variant A allele has also been associated with an increased risk 
of male breast cancer (Ottini et al., 2014). The hyperestrogenism due to the decreased 
elimination of circulating estrogen might lead to an increased risk of breast cancer.          
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2.3.3.3 Other SNPs associated with clinical activity of tamoxifen 
CYP2C19 enzyme is involved with N-demethylation and 4-OH-hydroxylation of 
tamoxifen (Crewe et al., 2002). A polymorphism in the CYP2C19 gene (rs4244285G>A) was 
associated with survival of postmenopausal breast cancer patients treated with adjuvant 
tamoxifen for 1-3 years (Table 4). In addition, the rs3740065 in the adenosine triphosphate 
(ATP)-binding cassette sub-family C member 2 (ABCC2) gene and the rs10509373 in the 
chromosome 10 open reading frame 11 (C10orf11) gene, have also been associated with the 
clinical outcome in breast cancer patients receiving tamoxifen (Table 4).  

Table 4. SNPs associated with outcome of breast cancer patients treated with adjuvant 
tamoxifen 
 
Gene, SNP Functional consequences Prognostic/predictive impact References 

SULT1A1,  Variant allele A associated  Variant AA genotype associated  
Raftogianis et al., 
1999;  

rs9282861G>A with lower catalytic activity  with poorer OS Nowell et al., 2002 

 
and poorer thermostability 

  

  
Trend of association of the variant Wegman et al. 2005 

  
A allele with poorer RFS 

 

    

  
No association with survival Choi et al. 2005, 

   
Knechtel et al. 2010 

    CYP2C19, Lack of enzyme activity The variant A allele associated  Scott et al, 2012; 

rs4244285G>A within the variant allele with improved RFS Beelen et al., 2013  

    ABCC2,  Not known Variant GG genotype associated  Kiyotani et al., 2010 

rs3740065A>G 
 

with improved RFS 
 

    C10orf11,  Not known Variant CC genotype associated  Kiyotani et al., 2012 

rs10509373T>C   with improved RFS   

2.3.4 Tamoxifen in the clinical setting   
Tamoxifen has been used in the clinical treatment of ER+ breast cancer since the early 
1970s. In the United States, tamoxifen is also approved by the Food and Drug 
Administration (FDA) for chemoprevention of breast cancer in high-risk women, likewise 
by the National Institute for Health and Care Excellence (NICE) in the United Kingdom 
for moderate and high risk women with certain conditions. Due to its mechanism of 
action, tamoxifen can be used in premenopausal, perimenopausal, and postmenopausal 
ER+ women, and in men, in contrast to AIs, which can only be used in the postmenopausal 
hormone environment.  
    It has been estimated that 5 years of adjuvant tamoxifen reduces the 15-year breast 
cancer recurrence and mortality by at least a third (EBCTCG, 2011a). The benefit of 
extended adjuvant tamoxifen for up to 10 years was shown in the Adjuvant Tamoxifen: 
Longer Against Shorter (ATLAS) trial. The patients continuing tamoxifen after 5 years had 
improved RFS, BCSS, and OS compared with the patients stopping at 5 years (Davies et 
al., 2013). The Arimidex, Tamoxifen, Alone or in Combination (ATAC) trial compared 5 
years of adjuvant tamoxifen and the AI, anastrozole, in postmenopausal breast cancer. 
Anastrozole was more favorable in terms of disease-free survival (DFS), but there were no 
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significant differences in OS after a median follow-up of 10 years (Cuzick et al., 2010). 
However, a recent meta-analysis of randomized studies indicated that 5 years of AI or 
switching to AI after 2-3 years of tamoxifen was more efficient than 5 years of tamoxifen in 
terms of 10-year breast cancer mortality. In addition, the OS favored 5 years of AI 
compared with 5 years of tamoxifen (EBCTCG, 2015).         
    Tamoxifen has long been the primary adjuvant endocrine therapy for premenopausal 
women (Goldhirsch et al., 2013) and male breast cancer patients (Fentiman et al., 2006). 
However, recent studies have revealed that ovarian function suppression (OFS) combined 
with an AI or tamoxifen may also be an option especially in young premenopausal women 
(Pagani et al., 2014; Francis et al., 2015). The St Gallen International Expert Consensus   
recommends AI/tamoxifen and OFS for premenopausal patients ≤ 35 years, with N2-3 
nodal status, or premenopausal estrogen levels persisting after adjuvant chemotherapy 
(Coates et al., 2015). However, due to the contradictory results from studies in which 
premenopausal patients had received a combination of AI and OFS, the current Clinical 
Practice Guidelines of European Society for Medical Oncology (ESMO) take a more 
cautious stance and recommend the combination of AI and OFS only in cases where 
tamoxifen is contraindicated (Gnant et al., 2009; Pagani et al., 2014; Senkus et al., 2015).  

    In postmenopausal women, tamoxifen alone is a suitable option for some patients.   
However, inclusion of an AI at some point is preferable in patients with N2-3 nodal status, 
high Ki-67, or grade 3 tumour (Coates et al., 2015). In node-positive disease, it is 
recommended to continue the endocrine therapy for 10 years after 5 years of tamoxifen 
regardless of menopausal status (Coates et al., 2015). The choice between different 
endocrine therapies is also influenced by potential adverse effects (Senkus et al., 2015). 
Tamoxifen is known to increase the risk of endometrial cancer and thromboembolic 
complications (Deitcher and Gomes, 2004; Chen et al., 2014). 

2.4 CHEMOTHERAPY 

2.4.1 Cell cycle 
A normal cell cycle is divided into four phases illustrated in the Figure 2. The first three 
steps, G1, S, and G2 phases are collectively called interphase. During the G1 phase, the cell 
grows in size and accelerates intracellular processes before entering the synthetic phase 
(S). The replication of the genome takes place during the S phase. Between the S phase and 
mitosis (M), there is a gap, G2, which is required for cell growth and preparing for mitosis 
in which the cell divides into two daughter cells (Malhotra and Perry, 2003).  
    The cell cycle is regulated mainly by two classes of molecules, cyclins and cyclin 
dependent kinases (CDKs). In addition, there are several checkpoints during the cell cycle 
for monitoring the cellular processes and interrupting the cell cycle if necessary. Entering 
the next phase is not allowed if the cell does not meet certain requirements, with the main 
checkpoints being the G1/S and G2/M checkpoints. The G1/S checkpoint, also called the 
restriction point, verifies intrinsic processes and enables repair of DNA damage. Cells not 
entering the S phase may move into a quiescent or senescent non-replicating state, G0 
phase. The DNA repair processes are completed by the G2/M checkpoint.  
    The progress of the cell cycle is also influenced by the tumor suppressor proteins, such 
as p53, and oncogenes. Normally, this complex and explicitly structured network of 
signals ensures flawless progress of the cell cycle. Dysregulation of the cell cycle may 
inhibit both cell cycle arrest and apoptosis, leading to the genesis of cancerous cells that 
replicate interminably. Mitosis results in the formation of two daughter cells which may 
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continue proliferating and dividing or move into senescence. Some cells are terminally 
differentiated and non-dividing. These subpopulations are found both in the normal and 
cancer cells (Hayflick, 1965; Di Micco et al., 2006). 
 
 
 

 

Figure 2. The cell cycle and processes involved in the cell division. Modified from 
http://www.nature.com/scitable/content/the-cell-cycle-14707478.   

2.4.2 Classical chemotherapy: Mechanism of action 
The majority of the chemotherapeutic agents act by hindering mitosis. Cytotoxicity is 
caused by damage to the DNA or impairment of the machinery for cellular division. 
Anticancer drugs can be classified by their cell-cycle-phase-specificity or chemical 
structure and mechanism of action. Classical chemotherapy agents can be categorized as 
alkylating agents, antimetabolites, anti-microtubule agents, topoisomerase inhibitors, and 
antitumor antibiotics (Table 5). 
 
2.4.3 Chemotherapy in the treatment of breast cancer 
In 1946, a study showing effectiveness of nitrogen mustard in treating lymphomas was 
published (Goodman and Wintrobe, 1946), and soon also patients with advanced solid 
tumours were treated with gradually evolving chemotherapeutic agents. In the 1960s it 
was also realized that surgery and radiotherapy alone did not cure all the patients even 
those with a local malignancy but a remarkable proportion of patients died due to 
recurrent disease that was most probably resulting from seemingly radical, but 
microscopically ineffective locoregional treatments. The first studies on the adjuvant 
chemotherapy of breast cancer were published in 1975 and 1976, using L-phenylalanine 
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mustard (L-PAM) alone and the CMF regimen (cyclophosphamide, methotrexate, and 5-
flurouracil), respectively (Fisher et al., 1975; Bonadonna et al., 1976).  
    Incorporation of polychemotherapy into postoperative treatment of breast cancer has 
improved RFS, BCSS, and OS independent of age, nodal status, tumour size, or ER status 
(EBCTCG, 2012). The standard CMF reduces the 10-year breast cancer mortality 6.1% and 
the overall mortality by 4.7 %. With the newer taxane-containing regimens, the 
proportional 10-year risk of breast cancer death has been reduced by roughly a third 
compared with the patients receiving no chemotherapy. However, the absolute gain 
depends on the primary absolute risk level. Therefore, the benefits should be weighed 
against the absolute risks of recurrence or death and the risk of adverse reactions and 
toxicities should be carefully considered.      
 
Table 5. Classification and examples of chemotherapeutic agents according to their mechanism 
of action. Modified from Payne and Miles, 2007. 
 
Class of chemotherapy Mechanism of action 
Inhibitors of DNA, RNA, and Form covalent bonds by linking an alkyl group or a heavy metal  
protein synthesis complex to DNA, RNA, and proteins, thus interfering the replication  
   Alkylating agents process. 
   Cytotoxic antibiotics 

    Platinum agents 
 

  Antimetabolites Compete with the natural substrate for an essential enzyme or 
   5-Fluorouracil (5-Fu) receptor, interfering with DNA synthesis and resulting in cell death. 
   Methotrexate (MTX) 5-Fu mimics pyrimidine analogues. MTX is a folate antagonist. 

  Microtubule agents Interfere mitosis. 
   Taxanes (TX) Inhibit cell division by stabilizing tubulin in the microtubule (TX). 
   Vinca alkaloids (V)  Bind to tubulin and inhibit further assembly of the spindle, resulting 
    Eribulin in impaired mitotic spindle formation in the M phase (V). 

  Topoisomerase inhibitors Stabilize the complex between topoisomerase I/II and DNA. This 
   Topotecan generates breaks in DNA strands and ultimately inhibits DNA  
   Irinotecan replication. 
   Anthracyclines   
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2.5 RADIOTHERAPY 

2.5.1 Radiotherapy: Mechanism of action 
Radiotherapy has been used in the treatment of cancer since the end of the 19th century, 
shortly after Roentgen discovered X-rays in 1895. The biological basis for the cell death 
caused by radiotherapy has been studied actively, and the double strand breaks of nuclear 
DNA are considered as the most important cellular mechanism of radiation induced 
cellular lethality (Vilenchik and Knudson, 2006). However, the therapeutic action of 
radiotherapy is largely mediated by the indirect actions of ionizing radiation. The 
radiolysis of cellular water leads to the formation of free radicals and ROS. These agents 
disrupt the covalent bonds of the DNA, thus interfering with the cell cycle and cell 
proliferation. The accumulation of DNA damage may lead to irreversible loss of the 
reproductive integrity or programmed cell death, apoptosis. The damage can be sublethal, 
potentially lethal, or lethal. 
    The classical 5 R’s of radiobiology that influence the cell survival are repair, 
redistribution, reoxygenation, repopulation, and intrinsic radiosensitivity. There are 
several mechanisms by which cells may repair the damage caused by ionizing radiation. 
Single strand breaks (SSBs) and injuries to the bases induced directly by radiation or 
indirectly by ROS are mainly repaired by base excision repair (BER) (Dianov and Lindahl, 
1994). Nucleotide excision repair (NER) is activated after the recognition of the distortion 
caused by DNA damage. Instead of repairing a single base, a short single stranded 
segment containing the damaged lesion is removed. DNA polymerase uses the 
undamaged single strand DNA as a template for building a complementary sequence 
(Josse et al., 1961), and DNA ligase completes the NER by joining the DNA strands 
together (Olivera and Lehman, 1967). 
    Homologous recombination repair (HRR) is a repair mechanism in which nucleotide 
sequences are exchanged between two similar or identical molecules of DNA. It is used in 
double strand break (DSB) sites and takes place in the S and G2 phases of the cell cycle. In 
non-homologous end joining (NHEJ), a similar template is not required but short 
homologous DNA sequences are used to guide repair (Valerie and Povirk, 2003). NHEJ 
occurs most actively in the G1 phase of the cell cycle during which homologous templates 
are not available. Mismatch repair (MMR) system rectifies errors generated during DNA 
replication (Kunz et al., 2009). 
   The cellular susceptibility to DNA damage induced by radiotherapy depends largely on 
the phase of the cell cycle. Cells in the late S-phase are most resistant whereas mitosis is 
the most sensitive phase for DNA injuries (Biade et al., 1997). In fractionated radiotherapy 
the time between fractions allows radiation resistant cells to redistribute and synchronize 
from the S-phase into the more sensitive phases of cell cycle (Withers, 1975).  
    Malignant tumours are often hypoxic. As irradiation kills cancer cells capillaries reach 
new areas and hypoxic areas are exposed to oxygen. This reoxygenation process can 
sensitise the surviving cancer cells to radiotherapy. It is also important to note that the 
proliferation of malignant cells can continue during irradiation. There is evidence that this 
process of repopulation can lead to radiation resistance and exert a negative impact on the 
clinical outcome of radiotherapy (Kim and Tannock, 2005; Gao et al., 2013). Intrinsic 
radiation sensitivity represents the variability in sensitivity to irradiation in different 
tumour types (Leith et al., 1994).  
    There is also evidence that certain gene signatures specific for cellular radiation 
sensitivity may predict individual radiation sensitivity and clinical outcome in breast 
cancer subjects (Eschrich et al., 2012). Patients classified as radiation sensitive by the 
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radiation sensitivity index (RSI) had a superior 5-year RFS or distant metastasis-free 
survival (DMFS) in two independent datasets in univariate analyses. RSI was an 
independent predictor of better DMFS in multivariate analysis of radiotherapy-treated 
ER+ patients in the other of the datasets. The RSI based on an assay of 10 genes (AR, cJun, 
STAT1, PKC, RelA,cABL, SUMO1, CDK1, HDAC1, and IRF1) did not predict survival in the 
cohort of patients not treated with radiotherapy.   
 
2.5.2 Radiotherapy in the treatment of breast cancer 
In the early 20th century radiotherapy for breast cancer was delivered mainly to those 
patients with extensive disease or who were too frail to undergo surgery. Gradually the 
techniques evolved and trials were conducted comparing the outcome of radical 
mastectomy against that with conservative surgery and radiotherapy. 
    Nowadays, postoperative radiotherapy is indicated after breast-conserving surgery.  In 
women treated with breast-conserving surgery, it has been estimated that postoperative 
radiotherapy nearly halves the risk of any recurrence, and reduces breast cancer mortality 
by about a sixth (EBCTCG, 2011b). An additional boost of up to 10-16 Gray (Gy) delivered 
in 2 Gy daily fractions to the tumour bed is recommended for patients with risk factors 
including age < 50 years, grade 3 tumours, extensive DCIS, vascular invasion or focal non-
radical tumour excision. Nodal irradiation is indicated in patients with lymph node 
involvement (Senkus et al., 2015). Radiotherapy after mastectomy reduces both the risk of 
recurrence and death from breast cancer in women with nodal positivity, and is also 
recommended for patients with large T3-T4 tumours irrespective of nodal status or 
involved margins (EBCTCG, 2014; Senkus et al., 2015). In addition, post-mastectomy 
radiotherapy should be considered in patients with certain risk factors such as young age 
or vascular invasion (Senkus et al., 2015).  
    After breast-conserving surgery radiotherapy is planned to target the whole breast and 
the scar, and is usually delivered from two tangential fields. An analogical approach is 
used in post-mastectomy radiotherapy with a slightly different technique. In case there is 
lymph node involvement, irradiation is also delivered to the regional lymph nodes, e.g. 
axillary and supraclavicular regions. Three-dimensional planning techniques should be 
utilized to guarantee safe and anatomically individual implementation of radiotherapy.  
    The historical standard of fractionation in the radiotherapy of breast cancer, 50 Gy in 25 
fractions, is still an option for all patients and it is the recommended fractionation in post-
mastectomy radiotherapy. Recent trials of hypofractionated radiotherapy (39-41.6 Gy in 13 
fractions over 5 weeks) with nearly 10 years of follow-up have shown that the 
hypofractionation is as effective as the traditional fractionation in terms of locoregional 
control (Haviland et al., 2013). Moreover, normal tissue effects, such as telangiectasia, 
breast oedema, and breast induration were less common in the patients treated with 
hypofractionated radiotherapy. Hypofractionation is currently widely accepted as the 
standard of care following breast sparing surgery, especially in patients without 
mastectomy and/or nodal involvement   (Coates et al., 2015; Senkus et al., 2015).  
  
2.5.3 Adverse effects of radiotherapy in breast cancer 
Radiotherapy may cause acute, delayed, and late toxicity. In the course of radiotherapy, 
there may be visible local dermal irritation and redness of the skin which usually resolves 
within a few weeks. Subacute lung reactions diagnosed by radiological imaging can be 
detected in approximately 45 % of patients (Jarvenpaa et al., 2006). Symptomatic 
pneumonitis with cough, mild fever, and dyspnea is a fairly rare event in breast cancer 
patients, with an incidence ranging from 1 to 13 percent (Lingos et al., 1991; Kwa et al., 
1998). 
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    The chronic complications of radiotherapy of breast include cardiac toxicity, lung 
fibrosis, and arm lymphoedema. There is evidence that the risk of major cardiac events 
increases linearly with the mean dose delivered to the heart, beginning within 5 years of 
treatment and continuing for at least twenty years (Darby et al., 2013). The risk seems to be 
accentuated in patients with preexisting cardiac risk factors, e.g. history of ischemic heart 
disease, diabetes, chronic obstructive pulmonary disease, smoking, and among women 
with high BMI values. The rate of cardiac complications is also higher in women with 
irradiation to the left breast than in women having the right breast irradiated (Darby et al., 
2013).       
    Secondary malignancies after radiotherapy for breast cancer are fortunately rare but 
should they occur, they are recognized as being severe late adverse effects. They usually 
arise in the organs that lie in the close vicinity of radiation fields. Breast irradiation has 
been associated with an increased risk of lung cancer and angiosarcoma of the breast or 
thoracic region, (Huang and Mackillop, 2001; Darby et al., 2005). Special techniques have 
been developed and evaluated to decrease the doses and volumes of irradiation of 
adjacent organs (Aziz et al., 2011; Pignol et al., 2011). For example, intensity modulated 
radiotherapy (IMRT), respiratory gating, and volumetric modulated arc therapy (VMAT) 
have already been implemented in clinical practice in order to reduce the doses delivered 
to cardiac and pulmonary tissues.  
    
2.5.4 Radiation genomics 
Radiation genomics studies the associations between germ line genotypic variations and 
the toxities caused by radiation. A substantial proportion of radiotherapy-treated cancer 
patients are long-term survivors. Hence, it would be important to find individual 
predictive factors especially for late and serious adverse effects. The dosing and 
fractionation schedules of radiotherapy are usually designed in order to minimize the risk 
of severe toxicities in all patients. Usually the radiotherapy dosing is based on the risk 
level of the patients who are radiosensitive. Consequently, patients who have a low risk of 
adverse effects may be undertreated. However, the radiosensitivity of normal tissues may 
not be related to the radiosensitivity of the tumor (Park et al., 2012).  
    Several candidate genes and their SNPs have been postulated to be involved with 
variability in radiation sensitivity (Rosenstein, 2011). However, the results have been 
difficult to replicate (Barnett et al., 2012a; Barnett et al., 2012b). Lately, genome-wide 
association studies (GWAS) with large patient datasets have reported some associations 
between common genetic variants and late adverse effects (Barnett et al., 2014).  

2.6 OXIDATIVE STRESS 

2.6.1 Oxidative stress and cancer 
Reactive oxygen species, ROS, are highly reactive molecular endogenous products of 
normal aerobic metabolism. ROS are ions or molecules that have a single unpaired 
electron in their outermost shell of electrons. They include the superoxide anion (O2•-), 
hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Oxidative stress and its 
implications in human diseases have been the subject of expanding research since the free 
radical theory of aging was first presented in the 1950s (Harman, 1956). 
    The most important intrinsic sources of ROS are mitochondrial aerobic metabolism and 
the extramitochondrial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
pathway (Cadenas and Davies, 2000; Arnold et al., 2001). It has been estimated that 1-2 % 
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of the total oxygen consumed during normal mitochondrial respiration is not converted to 
water (Cadenas and Davies, 2000). Ionizing radiation, several chemotherapeutic drugs, 
tobacco smoke, and other air pollutants serve as exogenous sources of ROS (Kovacic and 
Osuna, 2000; Spitz et al., 2004; Huang et al., 2005; Lodovici and Bigagli, 2011). Mammals 
have developed various antioxidant enzyme systems like catalase (CAT), glutathione 
peroxidase (GPX), peroxiredoxins (PRXs), and superoxide dismutases (SODs) in order to 
combat excess oxidative stress and maintain the cellular redox balance.  
    ROS play an important role in cell signaling (Forman, 2009), but they are also able to kill 
cancer cells by triggering apoptosis (Ozben, 2007). On the other hand, oxidative stress 
predisposes DNA to mutations and alters gene expression, thus exposing cells to 
carcinogenesis (Klaunig et al., 2010). In addition, oxidative stress is responsible for protein 
and lipid oxidation which may also play a role in the pathogenesis of malignancies 
including breast cancer (Mannello et al., 2009; De Luca et al., 2010). 
    ROS promote tumorigenesis by regulating several signaling cascades including MAPK, 
phosphoinositide-3-kinase (PI3K)/Akt, and IκB kinase (IKK)/nuclear factor-kappaB (NF-
κB) pathways (Burdick et al., 2003; Ruffels et al., 2004; Ruiz-Ramos et al., 2009). Moreover, 
alterations in mitochondrial DNA, oxidative phosphorylation, and energy metabolism 
result in constitutively expressed levels of ROS in tumour cells and a shift to a pro-
oxidative state. This has been demonstrated in in vitro studies comparing ROS levels of 
human tumour cells and non-transformed cells (Szatrowski and Nathan, 1991; Okamoto et 
al., 1994). Since a drastic increase in oxidative stress might be harmful, also cancer cells 
have to manage ROS levels carefully in order to survive.    
    Breast cancer patients have been reported to have elevated levels of 8-
hydroxydeoxyguanine (8-oxo-dG), the most abundant and studied oxidative DNA lesion 
(Malins and Haimanot, 1991). Furthermore, metastatic tumour DNA from breast cancer 
patients has been reported to exhibit > 2-fold increase in the amount of •OH damage 
compared with nonmetastastic tumour DNA, suggesting that the DNA phenotypes 
generated by ROS could have increased the potential for metastases (Malins et al., 1996).  
    
2.6.2 Keap1-NRF2 pathway 
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcriptional factor that plays a 
crucial role in activating expression of several cytoprotective genes in response to 
oxidative stress. Kelch-like erythroid cell-derived protein with cap’n’collar type 
homology-associated protein 1 (Keap1) is crucially involved in regulating the activity of 
NRF2. NRF2 and Keap1 form a complex that controls cellular responses against oxidative 
stress mediated by extrinsic and intrinsic insults. Under basal conditions, two Keap1 
molecules bind to NRF2 which is subsequently polyubiquitylated by the Cullin 3 (Cul3)-
based E3 ligase complex. As a result, NRF2 is rapidly degraded by the proteasome (Sekhar 
et al., 2002).  
    Under stress conditions, Keap1 is inactivated and consequently, newly synthetized 
NRF2 is stabilized and translocated from cytoplasm into the nucleus where it binds to the 
antioxidant response element (ARE) and induces the expression of detoxification and 
antioxidant genes (Itoh et al., 2004) (Figure 3). Thus, the balance between degradation and 
stabilization of NRF2 has a substantial influence on the reactions combatting oxidative and 
electrophilic stress.    
   However, NRF2 seems to have a dual role in cancer. In normal and premalignant cells, 
NRF2-Keap1 pathway yields protection from carcinogenic stimuli. Animal studies 
investigating the chemopreventive features of NRF2 revealed that NRF2 deficiency was 
associated with larger gastric and colorectal tumours in mice exposed to various 
carcinogenic agents compared with the wild type mice (Ramos-Gomez et al., 2001; Khor et 
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al., 2008). A human SNP of NRF2, rs6721961, has been predicted to lead to attenuation of 
antioxidant responses (Marzec et al., 2007) and has been associated with an increased risk 
of non-small cell lung cancer in carriers of homozygous variant genotype (Suzuki et al., 
2013).  
 
 
 
 
 
 
 
                           

 

Figure 3. The Keap1-NRF2 signaling pathway. Under normoxic conditions NRF2 and Cullin3 
(Cul3) bind to the Keap1 in the cytoplasm, resulting in the ubiquitination (Ub) of NRF2. 
Proteasome 26S further degrades the NRF2. Upon exposure to reactive oxygen species (ROS), 
NRF2 is released from Keap1 and translocates into the nucleus. NRF2 forms heterodimer with 
small musculoaponeurotic fibrosarcoma proteins (Mafs) and binds to the antioxidant response 
element (ARE). Subsequently, ARE-driven gene expression of antioxidative and detoxifying 
genes is upregulated, including glutathione-S-transferases (GSTs), superoxide dismutases 
(SODs), and sulfiredoxin (SRXN1). Upon restoration of redox homeostasis, Keap1 moves 
independently into the nucleus and mediates postinduction repression of NRF2 by dissociating 
NRF2 from ARE. The Keap1-NRF2-complex is then transported out of the nucleus. Modified 
from Lau et al. 2008.    
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    On the other hand, there is growing evidence that sustained activation of NRF2 
provides a survival advantage to cancer cells and leads to chemoresistance and radiation 
resistance. In A459 lung cancer cells, NRF2 has been shown to directly activate glucose-6-
phosphate dehydrogenase (G6PD), phosphogluconate dehydrogenase (PGD), 
transketolase (TKT), transaldolase 1 (TALDO1), malic enzyme 1 (ME1), and isocitrate 
dehydrogenase 1 (IDH1) by binding to their respective AREs (Mitsuishi et al., 2012). These 
proteins are important in building DNA and RNA and inducing proliferation in malignant 
cells as they are involved in glucose flux and purine generation. NRF2 has also been 
shown to promote glutamine (Gln) metabolism, especially in the presence of active PI3K-
Akt signaling (Mitsuishi et al., 2012). Reprogramming of these metabolic activities enhance 
anabolic pathways and contribute to aggressive proliferation of malignant cells. 
   Several mechanisms have been identified as being involved in the induction of the NRF2 
activity in cancer. Somatic mutations in Keap1 and NRF2 have been discovered in lung, 
gallbladder, and breast cancer (Padmanabhan et al., 2006; Sjoblom et al., 2006; Shibata et 
al., 2008). Furthermore, epigenetic hypermethylation inhibits Keap1 gene expression, 
followed by the accumulation of NRF2. Aberrant promoter methylation of Keap1 gene has 
been detected in breast cancer patients (Barbano et al., 2013).  Keap1 promoter methylation 
was associated with inferior OS in patients with triple negative breast cancer, whereas in 
patients treated with adjuvant epirubicin/cyclophosphamide and docetaxel Keap1 
methylation predicted enhanced apoptosis.  

2.6.3 SRXN1 
Peroxiredoxins (PRXs) are a family of enzymes that catalyze the reduction of H2O2 to 
water.  A subgroup of PRXs, the typical 2-Cysteine (2-Cys) PRXs, contain a conserved C-
terminal cysteine residue which is oxidized to sulfinic acid during enzymatic reduction of 
H2O2. The PRXs are inactivated by hyperoxidation in highly oxidative conditions, 
rendering them resistant to reduction by thioredoxin. This inactivation was considered 
irreversible until sulfiredoxin (SRXN1) was found and it was shown to have Mg2+ and 
ATP-dependent sulfinic acid reductase activity towards PRXs (Biteau et al., 2003).  H2O2 
has been demonstrated to induce the expression of SRXN1, whereas deletion of SRXN1 
lead to reduced tolerance to H2O2 (Biteau et al., 2003). SRXN1 has been reported to be 
induced by NRF2 in neurons and glia (Soriano et al., 2008) (Figure 3), and it is also a target 
gene for the activator protein 1 (AP-1), a transcription factor that influences several 
cellular functions including proliferation and apoptosis.  
    Glutathione (GSH) is one of the reductants utilized in H2O2 catalysis. Glutathionylation 
may lead either to an inhibition or an induction of enzymatic activity (Manevich et al., 
2004; Takata et al., 2013). The precise functional consequences of this process in the 2-Cys 
PRXs have not yet been fully elucidated. However, it has been shown that SRXN1 is 
capable of catalyzing deglutathionylation of proteins in response to oxidative stress, 
including 2-Cys PRXs (Findlay et al., 2006; Park et al., 2009). Hence, SRXN1 has been 
designated as a novel antioxidant that protects cells from the oxidative stress caused by 
H2O2 and reverses glutathionylation. On the other hand, there is evidence in experiments 
on mice that SRXN1 may promote skin and colon tumorigenesis (Wei et al., 2013; Wu et 
al., 2014c).    
   
2.6.4 MnSOD 
There are three major families of superoxide dismutases (SODs) in mammals, i.e., 
manganese SOD (MnSOD), copper zinc SOD (CuZnSOD), and iron SOD (FeSOD). The 
SODs catalyze the dismutation of O2 to H2O2, which is subsequently converted to water by 
CAT. The proper functioning of these scavenging enzymes seems to be an essential 
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biochemical process. Genetic deletion of MnSOD in mice leads to early post-natal lethality 
associated with neuronal degeneration and severe cardiomyopathy (Lebovitz et al., 1996). 
    MnSOD has a critical antioxidative role in establishing cellular redox balance. The 
MnSOD precursor synthesized in the cytosol is imported to the mitochondria (Pfanner and 
Geissler, 2001) (Figure 4). A substitution of valine (Val) to alanine (Ala) at codon 16 in exon 
2 (rs4880A>G) results in a SNP with functional consequences. The 16Val-containing 
precursor is less abundant in the mitochondria and has 30-40 % reduced enzymatic 
activity (Sutton et al., 2003).  
    MnSOD is induced by several transcription factors including NF-κB, and PKC (Xu et al., 
1999; Chung et al., 2011). On the other hand, MnSOD in turn affects the activity of several 
transcription factors, such as mammary serine protease inhibitor (maspin) (Li et al., 1998a), 
and p53 (Drane et al., 2001). The overexpression of MnSOD inhibits the transcriptional 
activity of NF-κB in MCF-7 breast cancer cells (Li et al., 1998b).   
     
 
 

 

Figure 4. The role of MnSOD in the mitochondrial antioxidant defence system. During periods 
of oxidative stress the MnSOD precursor is transported from the cytosol into the mitochondria 
where it catalyzes the conversion of superoxide anion (O2•-) into water (H2O) and hydrogen 
peroxide (H2O2).  H2O2 is further detoxified by catalase (CAT), glutathione peroxidase (GPX), or 
glutathione-S-transferases (GSTs). Alternatively, reactions catalyzed by myeloperoxidase 
(MPO) may generate highly reactive hypochlorous acid (HOCl) and hydroxyl radicals (•OH). 
Modified from Amaro-Ortiz et al. 2014.     
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    In support of MnSOD’s putative activity as a tumor suppressor protein, it has been 
shown that increased MnSOD expression inhibits breast cancer cell growth in vitro and in 
vivo (Li et al., 1995; Weydert et al., 2006). A meta-analysis of fourteen studies investigating 
the association between the MnSOD rs4880 polymorphism and the risk of breast cancer 
found no significant interaction (Liu et al., 2012). However, a subgroup analysis showed 
that the risk of breast cancer was increased in premenopausal women carrying the variant 
G allele. A similar effect was noted in patients with certain lifestyle factors: history of 
smoking, use of oral contraceptives, and a higher BMI. These results are contradictory to 
the proposal that the more active rs4880 variant G allele might confer protection from 
carcinogenic stimuli.    
    MnSOD activity may also influence tumour cell survival by modulating the response to 
ROS. For example, breast cancer cells with an increased MnSOD expression have been 
shown to display resistance in vitro to the ROS producing compound, doxorubicin (Park et 
al., 2004). In view of the functional consequences of the rs4880 polymorphism, it could be 
postulated that patients carrying the rs4880 A allele might enjoy a survival advantage 
from an inferior capacity to protect cancer cells from the oxidative stress generated by 
cancer treatments.   
    However, the results from clinical studies on the MnSOD rs4880 and breast cancer have 
been conflicting (Ambrosone et al., 2005; Bewick et al., 2008; Glynn et al., 2009; Yao et al., 
2010; Hubackova et al., 2012; Cronin-Fenton et al., 2014). Carrying the variant G allele has 
been associated with worse DFS and BCSS in patients receiving adjuvant 
cyclophosphamide-containing chemotherapy (Glynn et al., 2009; Yao et al., 2010), whereas  
no association was found between MnSOD genotype and RFS in Danish patients with 
early breast cancer after cyclophosphamide-based adjuvant chemotherapy (Cronin-Fenton 
et al., 2014). On the contrary, carrying the homozygous wild type AA genotype predicted 
worse progression free survival (PFS) and BCSS in patients with metastatic breast cancer 
treated with high dose chemotherapy and autologous stem cell transplantation (Bewick et 
al., 2008).  
 
 
2.7 DNA REPAIR GENES XPD AND XRCC1 

2.7.1 The role of XPD in DNA repair 
The Xeroderma pigmentosum group D (XPD) protein is an essential component in the 
human NER pathway. XPD functions as a 5’-3’ helicase within the transcription factor IIH 
(TFIIH) complex that is involved in the regulation of transcription and NER pathway 
(Sung et al., 1993; Hoeijmakers et al., 1996). This unwinding helicase function results in 
lengthening the unpaired region and allows binding of additional NER factors (Figure 5).  
In addition, XPD seems to have a substantial role in identifying DNA damage (Mathieu et 
al., 2013). Mutations in the human XPD gene disabling the NER system may result in 
severe disorders including xeroderma pigmentosum characterized with extreme 
sensitivity to sunlight and cancer predisposition, and progeroid diseases Cockayne 
syndrome and trichothiodystrophy (Lehmann, 2003).   
 
2.7.2 XPD rs13181 
One of the best known polymorphisms in the human XPD gene is the XPD lysine (Lys) 
751Gln of exon 23 (rs13181A>C). Data from in vitro studies investigating the functional 
effect of the rs13181 polymorphism have been controversial. A comet assay of human 
lymphocytes observed significantly higher levels of SSBs in individuals carrying the 
rs13181 wild type A allele (Vodicka et al., 2004). In a study examining 31 individuals, one 
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of them with a previous history of breast cancer, the homozygous rs13181 wild type AA 
genotype was associated with a reduced repair of X-ray induced DNA breaks and gaps in     
lymphocytes (Lunn et al., 2000). Another study with healthy donors failed to detect any 
significant association with the correction of X-ray induced DNA injury but revealed an 
increased rate of DNA damage after exposure to ultraviolet light for the rs13181 AC and 
CC genotypes (Au et al., 2003). The homozygous rs13181 wild type AA genotype 
correlated with superior capacity to repair DNA in a host cell reactivation assay obtained 
from lung cancer patients (Spitz et al., 2001). 
 
 
 
 
 
 
     

 

 
Figure 5. Simplified nucleotide excision repair (NER) pathway. Upon identification of DNA 
damage repair proteins including xeroderma pigmentosum group C and A (XPC and XPA), 
human replication protein A (RPA), and transcription factor IIH (TFIIH) complex are recruited 
to the damaged site. Subsequently, helicases XPD and XPB unwind the DNA. The damaged 
DNA is removed by incisions made by endonucleases XPF, excision repair cross 
complementation group 1 (ERCC1), and XPG. The gap is filled by DNA polymerases (Pol), and 
the repair process is completed by DNA ligase (LIG). Modified from Masters et al. 2003. 
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    A meta-analysis of statistically powerful case-control studies showed null associations 
for the rs13181 polymorphism with risk of breast cancer (Pabalan et al., 2010). However, a 
subanalysis including studies of individuals exposed to aromatic adducts detected a 
significant risk for breast cancer in carriers of rs13181 variant C allele (Pabalan et al., 2010).   
    The XPD rs13181 variant CC genotype was associated with a smaller risk of severe 
erythema after breast conserving radiotherapy in patients with large breasts (Raabe et al., 
2012), while several studies have reported no significant influence of the rs13181 genotype 
on the acute or late dermal side effects of breast irradiation (Chang-Claude et al., 2005; 
Chang-Claude et al., 2009; Zschenker et al., 2010; Mangoni et al., 2011; Terrazzino et al., 
2012).  
    There are few publications on the XPD rs13181 polymorphism and the clinical outcome 
of breast cancer. Two clinical studies have reported better outcomes for patients with 
metastatic breast cancer treated with chemotherapy carrying the rs13181 wild type A allele 
(Chew et al., 2009; Bewick et al., 2011), whereas this SNP did not affect the outcome in 
early breast cancer patients receiving adjuvant anthracycline-based chemotherapy (Castro 
et al., 2014).  
 
2.7.3 XRCC1 function 
X-ray repair cross-complementing protein (XRCC1) is a 70 kilodalton DNA repair protein 
involved in the BER and repair of SSBs (Figure 6). It has no known enzymatic function of 
its own but acts as a scaffold protein interacting with the multiple enzymes required for 
BER and SSB repair such as polymerase β (Pol β), PARP, apurinic/apyrimidinic 
endonuclease-1 (APE1), human glycosylase (hOGG1), and ligase III (LIG3) (Ginsberg et al., 
2011). One important feature of XRCC1 protein is its interaction with two BRCA1 
carboxyl-terminal (BRCT) domains, BRCT I and BRCT II (Bork et al., 1997; Callebaut and 
Mornon, 1997). APE1, hOGG1, and PARP bind to the region of BRCT I domain, whereas 
LIG3 binds to the C-terminus BRCT II domain (Ginsberg et al., 2011). In addition, XRCC1 
seems to participate in DSB repair (Audebert et al., 2004; Levy et al., 2006). 
    Animal studies have demonstrated the importance of XRCC1 in embryonal 
development. The embryos of XRCC1 null mice were unable to survive until midgestation 
(Tebbs et al., 1999). In addition, XRCC1 deficient cells were found to have reduced levels 
of LIG3 activity.  
    A SNP of the XRCC1 in codon 399 of exon 10 (rs25487G>A) results in an amino acid 
change from Arg to Gln. This SNP is located within the BCRT I domain that interacts with 
PARP (Masson et al., 1998). It has been proposed that the variant rs25487 AA genotype is 
associated with a 3-4 fold reduction in the DNA repair capacity (Slyskova et al., 2007). In 
line with this observation, chromosomal deletions have been found to be more frequent in 
irradiated lymphocytes of nonsmoking individuals carrying the variant A allele compared 
with the rs25487 GG genotype (Au et al., 2003). Another study compared the homozygous 
rs25487 wild type and homozygous variant type lymphocytes from two individuals 
exposed to the reactive intermediate of vinyl chloride capable of generating pro-mutagenic 
DNA adducts. The repair of DNA adducts was four times more efficient in the 
homozygous wild type cells compared with the homozygous variant cells (Li et al., 2006). 
Similarly, the rs25487 wild type GG genotype was associated with a reduced number of 
DNA breaks in X-ray exposed lymphocytes from colon carcinoma patients (Gdowicz-
Klosok et al., 2013). On the contrary, no association between the rs25487 polymorphism 
and efficiency of DNA damage repair was found in two studies where whole blood 
samples from breast cancer patients were irradiated in vitro  (Sterpone et al., 2010; 
Zschenker et al., 2010).  
   



28 
 

 

2.7.4 XRCC1 rs25487 and its clinical implications in breast cancer 
Several studies have investigated the XRCC1 rs25487 polymorphism and risk of breast 
cancer. The results have been inconclusive as the variant A allele has been associated with 
an increased risk (Duell et al., 2001; Moullan et al., 2003; Metsola et al., 2005; Sterpone et 
al., 2010) as well as having no effect on the breast cancer risk (Smith et al., 2003; Zhang et 
al., 2006; Zipprich et al., 2010; Przybylowska-Sygut et al., 2013).     
     
 
 
     

 

 
Figure 6. Global pathways of single-strand break (SSB) repair pathway. SSBs may arise 
indirectly during base-excision repair (BER) by enzymatic incision at an apurinic-apyrimidinic 
(AP) site by AP endonuclease (APE1). Direct SSBs may arise by reactive oxygen species 
(ROS)-induced sugar damage. Direct SSBs are detected by poly(ADP-ribose) polymerase 1 
(PARP). BER-induced SSBs are repaired by APE1, polynucleotide kinase 3’-phosphatase 
(PNKP), aprataxin (APTX) and polymerase β (POLβ). Direct SSBs are repaired by APE1, PNKP, 
and APTX. End processing is followed by gap filling. POLβ is essential in the short-patch repair. 
Sugar damage cannot be repaired by POLβ alone but requires gap filling extended for ~ 2-12 
nucleotides by POLδ and POLε (POLδ/ε). The removal of the damaged 5’-terminus is stimulated 
by PARP and proliferating cell nuclear antigen (PCNA). Short-patch repair sites are primarily 
ligated by DNA ligase 3 (LIG3), and long-patch repair sites are mainly ligated by DNA ligase 1 
(LIG1). Modified from Caldecott 2008. 
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    The question of whether there is an association between the XRCC1 polymorphisms and 
the normal tissue complications in breast cancer patients after postoperative radiotherapy 
has been addressed in a number of studies. Carrying the XRCC1 rs25487 wild type G allele 
in combination with the carriage of XRCC1 rs1799782 (Arg194tryptophan[Trp]) variant 
allele was linked with a significantly increased risk of severe acute dermal reactions 
(Mangoni et al., 2011). The wild type G allele associated with an increased risk of acute 
skin reactions in patients with normal weight (Chang-Claude et al., 2005), whereas this did 
not apply for late normal tissue toxicity (Chang-Claude et al., 2009) There are also other 
studies reporting null effects (Andreassen et al., 2005; Raabe et al., 2012; Terrazzino et al., 
2012).    
    The results from clinical studies exploring the rs25487 and the outcome of breast cancer 
have been inconclusive. Homozygosity for the wild type G allele has been associated with 
improved BCSS in a study of 95 patients with metastatic breast cancer treated with 
chemotherapy (Bewick et al., 2006), and with superior DFS in a study of 84 patients 
receiving adjuvant chemotherapy  (Castro et al., 2014). On the other hand, possessing the 
rs25487 AA variant genotype has been correlated with better DFS or OS in early breast 
cancer patients treated with chemotherapy or radiotherapy (Jaremko et al., 2007; Ye et al., 
2012; Przybylowska-Sygut et al., 2013). There are also studies that did not detect any 
significant differences in survival according to the rs25487 genotype (Costa et al., 2008; 
Syamala et al., 2009). 
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3 Aims of the Study 
The prognosis of breast cancer depends on several tumour-related factors including the 
stage of the disease at diagnosis, hormone receptor and HER2 status, and the molecular 
subtype of the tumour. In addition, personal genetic differences in the activity of 
detoxifying enzymes and DNA repair may influence survival. More precise prognostic 
and predictive markers are required before one can introduce personalized therapies i.e. 
finding the most effective and least toxic therapy for each patient. 
    The aim of this thesis was to investigate the role of genetic components in xenobiotic 
metabolism, oxidative stress response, and DNA repair on the survival of breast cancer 
patients. The outcome was specifically assessed according to different adjuvant 
treatments, e.g. chemotherapy, tamoxifen treatment, and postoperative radiotherapy.  

The specific aims of this thesis were: 
  

1. To study the prognostic and predictive value of the SULT1A1 rs9282861 
polymorphism in patients with early breast cancer    

 
2. To assess the influence of polymorphism in ROS-responsive genes NRF2, 

SRXN1, and MnSOD with the outcome of breast cancer   
 

3. To evaluate the association of NRF2 and SRXN1 polymorphisms with the 
breast cancer risk and to analyze their patterns of protein expression 

 
4. To investigate the association of DNA repair gene polymorphisms XPD 

rs13181 and XRCC1 rs25487 with the survival of breast cancer patients 
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4 Materials and Methods 

4.1 CASES AND CONTROLS 

4.1.1. Breast cancer patients 
The Kuopio Breast Cancer Project (KBCP) is a prospective population-based case-control 
study conducted in 1990-1995. Women entering Kuopio University Hospital due to breast 
symptoms were invited to take part in the study at their first visit to the hospital. The 
subjects provided written informed consent for participation in the study. Altogether 520 
women out of 1,919 were eventually diagnosed to have breast cancer. Data were collected 
from the patients with regard to medical history, family history of breast cancer, 
socioeconomic background, alcohol use, and cigarette smoking. All patients were ethnic 
Finns. Hospital registries were used to collect information concerning clinico-pathological 
features of the breast cancer, surgical and oncological treatments, and follow-up.  
    Only patients who had an operated primary local invasive breast cancer and known 
TNM status were included in the survival analyses (n=442).  
    Adjuvant tamoxifen was given to 91 patients, and four of them received also adjuvant 
chemotherapy. The daily doses of tamoxifen were 20 mg or 40 mg. The median duration of 
tamoxifen treatment was 36.0 months (range 0.5 -79.0 months). Patients who received 
tamoxifen for less than 3 months or had negative hormone receptor status were excluded 
from the tamoxifen subgroup analyses.  
    The regimens used in the adjuvant chemotherapy were intravenous CMF 
(cyclophosphamide 500 mg/m2, methotrexate 40 mg/m2, 5-fluorouracil 500 mg/m2) and 
CNF (cyclophosphamide 500 mg/m2, mitoxantrone 10 mg/m2 and 5-fluorouracil 500 
mg/m2). CMF was allocated to 81 patients, whereas 6 patients received CNF. The median 
number of chemotherapy cycles was six (range 2-8).  
    A total of 263 patients received postoperative radiotherapy. In 46 patients the target of 
radiotherapy was the breast, and in 182 patients the radiotherapy was delivered to the 
breast or chest wall and also to the axillary node region. One patient received irradiation 
of the regional lymph nodes only. An additional external booster was given to seven 
patients, and 26 patients were treated with an internal (brachy) booster. One patient was 
treated with internal booster only. The median dose of external radiotherapy delivered 
was 50 Gy (range 28-56 Gy). In the radiotherapy subgroup analyses, only patients with ≥ 
44 Gy of external radiotherapy to the breast or breast and regional lymph nodes were 
included. An additional booster was also allowed.  
    The demographic characteristics of 442 breast cancer patients are depicted in Table 6. 
Due to the varying availability of genotype data the number of patients in different 
treatment subgroups varies depending on the polymorphism in question. 
    The KBCP has been approved by Kuopio University Hospital Board on Research Ethics 
and the Ethical Committee of the University of Eastern Finland. All patients gave written 
informed consent to participate in the study.  
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Table 6. Patient characteristics (n=442) 
 
Characteristics No. of patients (%) 

Age at diagnosis, years 
    ≤ 39 40 (9.0) 

   40-49 104 (23.5) 
   50-59 114 (25.8) 
   60-69 70 (15.8) 
   ≥ 70 114 (25.8) 
T stage (UICC)   
   1 233 (52.7) 
   2 172 (38.9) 
   3 25 (15.7) 
   4 12 (2.7) 
Nodal status   
   N0 263 (59.5) 
   N1 166 (37.6) 
   N2 13 (2.9) 
Stage (UICC)   
    I 180 (40.7) 
   II 220 (49.8) 
   III 42 (9.5) 
ER status   
  positive 325 (73.5) 
  negative 95 (21.5) 
  unknown 22 (5.0) 
PR status   
  positive 259 (58.6) 
  negative 159 (36.0) 
  unknown 24 (5.4) 
HER2 status   
  positive 51 (11.5) 
  negative 348 (78.7) 
  unknown 43 (9.7) 
Surgery   
  Mastectomy 345 (78.1) 
  Resection 97 (21.9) 
Adjuvant treatment   
   Tamoxifen 91 (20.6) 
   Chemotherapy 87 (19.7) 

   Radiotherapy 263 (59.5) 

Abbreviations: UICC, International Union Against Cancer; Fourth, Fully Revised Edition. 
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4.1.2 Controls 
The controls (publication II) were selected from of a group of subjects drawn from the 
National Population Registry living in the same catchment area. The controls were 
individually matched with the breast cancer cases by age (± 5 years) and the long term 
area of residence (rural/urban) (Mannisto et al., 1999).  

4.2 SINGLE NUCLEOTIDE POLYMORPHISM SELECTION FOR NRF2 AND 
SRXN1 

TagSNPs for NRF2 and SRXN1 were chosen using the HapMap Genome Browser release 2 
as of February 24 and November 8, 2010. TagSNPs for regions chr2:177799989-177853228 
and chr20:573580-583579 were selected for the Central European (CEU) population using 
the Tagger multimarker algorithm with r2 cutoff at 0.8 and minor allele frequency cutoff at 
0.05. Two functional polymorphisms located in the NRF2 promoter region were picked up 
based on previous publications (Yamamoto et al., 2004; Marzec et al., 2007).    

4.3 GENOTYPING ANALYSES 

4.3.1 Genotyping of SULT1A1, MnSOD, XPD, and XRCC1 
One hundred ng of DNA extracted from peripheral blood lymphocytes were used as a 
template in the genotyping analyses using standard polymerase chain reaction (PCR)-
based restriction fragment length polymorphism (RFLP) assays. Samples with known 
genotypes and nontemplate samples were used as positive and negative internal controls, 
respectively. Duplicates of 10 % of the samples were blindly analyzed for quality control 
with fully concordant results. The primer sequences, restriction enzymes and the allele-
specific fragments from each genotyping analysis are shown in Table 7.   
 
Table 7. Primers, enzymes, and the allele-specific fragment sizes in the genotyping analyses of 
SULT1A1, MnSOD, XPD, and XRCC1. 
 
Variation PCR Primer sequence Enzyme Fragment size (wt/vt) 

SULT1A1 rs9282861 F: GGTTGAGGAGTTGGCTCTGC Bsp143II 104+77 bp/281 bp 

 
R: ATGAACTCCTGGGGGACGGT 

  MnSOD rs4880 F: ACCAGCAGGCAGCTGGCGCCGG NgoMIV 107 bp/89+19 bp 

 
R: GCGTTGATGTGAGGTTCCAG 

  XPD rs13181 F: ATCCTGTCCCTACTGGCCATTC PstI 220+104 bp/157+104+63 bp 

 
R: TGTGGACGTGACAGTGAGAAAT 

  XRCC1 rs25487 F: TTGTGCTTTCTCTGTGTCCA MspI 221+374 bp/615 bp 
  R: TCCTCCAGCCTTTTCTGATA     
wt, wild type allele; vt,variant type allele; bp, base pairs; F, forward primer; R, reverse 
primer. 

4.3.2 Genotyping of NRF2 and SRXN1 
Genomic DNA was isolated from peripheral blood lymphocytes of both cases and controls 
using standard procedures (Vandenplas et al., 1984). Genotyping of 6 NRF2 and 8 SRXN1 
TagSNPs and 2 NRF2 functional SNP was performed by MassARRAY (Sequenom, Inc.) 
and iPLEX Gold (Sequenom, Inc.) on 384-well plate format. Spectra acquisitions from the 
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SpectroCHIP were done with MassARRAY mass spectrometer. Data analysis and 
genotype calling were conducted using TyperAnalyzer Software version 4.0.3.18 
(Sequenom, Inc.). A minimum of 8 non-template controls were included in each 384-well 
plate. Duplicate analysis was performed for 6.7 % of the samples for quality control. 
Genotyping of the NRF2 TagSNP rs2886162 was conducted with the 5’-nuclease assay 
(Taqman) using the Mx3000P Real-Time PCR System (Stratagene) according to the 
manufacturer’s instructions. Primers and probes for the rs2886162 were obtained from 
Applied Biosystems as TaqMan Genotyping Assays. Reactions were performed in 10-µL 
volume in 96-well format as previously described (Kauppinen et al., 2010). The primer 
sequences for other NRF2 and SRXN1 genotyping assays are depicted in Table 8.  
 
 
4.4 BREAST CANCER TUMOUR TISSUE MICROARRAY 
Paraffin-embedded tumour tissue from the primary tumour was obtained in the breast 
cancer surgery from all breast cancer patients participating in the KBCP. In the present 
study, tissue samples from 377 invasive breast carcinomas were available in a tissue 
microarray format. All the materials had been fixed in 10 % buffered formalin and 
embedded in paraffin. The array blocks were constructed with an MTA-1 Manual Tissue 
Arrayer instrument (Beecher Instruments, Inc., Sun Prairie, WI, USA). The sample 
diameter of the tissue core in the array block was 1000 µm. Each block was produced in 
triplicate (three biopsies from each sample).  
 
 
4.5 IMMUNOHISTOCHEMISTRY OF NRF2 AND SRXN1 
Deparaffinized and rehydrated sections were heated in a microwave oven in citrate buffer 
(pH 6.0) for 3 x 5 min, incubated in the citrate buffer for 18 min, and washed with PBS for 
2 x 5 min. Endogenous peroxidase activity was blocked with 5 % hydrogen peroxide for 5 
min and then the sections were washed with PBS for 2 x 5 min. Nonspecific binding was 
blocked with 1.5 % normal serum in PBS for 25 min at room temperature. The primary 
antibodies [rabbit polyclonal anti-human NRF2 (sc-722, Santa Cruz Biotechnology, Inc., 
Santa Cruz, CA, USA) and rabbit polyclonal anti-human sulfiredoxin (14273-1-AP, Protein 
Tech Group, Chicago, IL, USA)] were diluted with 1 % bovine serum albumin in PBS to 
1:200 and 1:500 working solutions, respectively, and incubated on the slides overnight at 
4°C. The negative control was incubated with 1 % BSA in PBS instead of the primary 
antibody. The slides were washed with PBS for 2 x 5 min and incubated with the 
biotinylated secondary antibody (anti-mouse IgG; ABC Vectastain Elite kit, Vector 
Laboratories, Burlingame, CA) for 35 min at room temperature. After this, the slides were 
washed with PBS for 2 x 5 min, incubated for 45 min in preformed avidin-biotinylated 
peroxidase complex (ABC Vectastain Elite kit, Vector Laboratories) and washed twice for 5 
min with PBS. The colour was developed with diaminobenzidine tetrahydrochloride 
(DAB) substrate (Sigma, St. Louis, MO). The slides were counterstained with Mayer’s 
haematoxylin, washed, dehydrated, cleared and mounted with DePex (BDH, Poole, UK).           
The NRF2 immunostaining was evaluated separately in tumour cell nuclei and cytoplasm. 
For SRXN1, only the cytoplasmic immunoreactivity was evaluated. The results for NRF2 
were semi-quantified as follows: 0 % – 5 %, negative; >5 % to 25 %, weak positivity; >25 % 
to 75 %, moderate positivity; and >75 % to 100 %, strong positivity. For the analyses, NRF2 
expression was dichotimized by the assessment of the pathologist into two groups: low 
extent (≤25 %) and high extent (>25 %) expression. For SRXN1, the presence (>1 %) or 
absence of cytoplasmic expression was recorded.  
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Table 8. Primer sequences for genotyping of NRF2 and SRXN1. 
 
Variation PCR primer sequence* Extension primer sequence* 
NRF2 

  rs6721961 F: 1-CCCTGCCTAGGGGAGATGT GGGAGATGTGGACAGC 

 
R: 1-GCGTTCAGGGTGACTGCGA 

 rs1806649 F: 1-CAGTCTTAGAGGAACTCATA AGAGGAACTCATATCCTAAG 

 
R: 1-ATCCCCCTTGAGGGACATTt 

 rs1962142 F: 1-TTGAGAGCAAAGGCACAGTC TTTCCTTCTCCAACCC 

 
R: 1-TTCAGAGGACTTTCCTTCTC 

 rs2364722 F: 1-CAGAAAACATACCATTAGC gggGCAATTGAATAAATCTTGGCCTAT 

 
R: 1-TAAGCGCCAACAAACATTt 

 rs10183914 F: 1-GTCTTCGTTTATTGCCCAGC CAGCTGGCTCTTTACT 

 
R: 1-ACCCATTTGCTGCAAGTATC 

 rs2706110 F: 1-GTGAGAAATTACAAATTTCA GTCATGGCATAGTTGAGA 

 
R: 1-CAAGAGAAATGAACACTTGG 

 rs13035806 F: 1-AGCCTCCCACCTGGGATTAC gagaaACCACACCCGGCCCTGAA 

 
R: 1-gacacttgaGAACTTGAAAA 

 rs6706649 F: 1-AGCTCGTGTTCGCAGTCACC CGCAGTCACCCTGAACGC 

 
R: 1-GACCTGAGCTTAGGAGAATG 

 SRXN1 
  rs6085283 F: 1-GATCTCATGTGCTCACCTTC CGGGGGAAGGGGACACAA 

 
R: 1- AGAACAGGTGTCAGGTTAGG 

 rs13043781 F: 1- TGAGAAACGACAAGGCAGAG GAGATAGAAGAGGTTCTCAAC 

 
R: 1- ATCTGCCATGCATGCCCTGT 

 rs6076869 F: 1-ATAGACAGGAATGGGTAGAC cAGGTTACAGAACAAGAGC 

 
R: 1- GAGTCTGGAGTTCAGGTTCT 

 rs6053666 F: 1- GCAAAAGGATCCAAGACGTG TTGGTTCAACAACTCCACG 

 
R: 1- CTGGAGATGGGTGGCTAATG 

 rs2008022 F: 1- TAAAACATCCTAGAGGGCTG CCACTAATGCCCGGTAG 

 
R: 1- CTTAGTGCTCCACTAATGCC 

 rs6116929 F: 1- GAAGCTTCTTGGAGGAGGTA tGAGGAGGTACCACCTTT 

 
R: 1- CCATTCCTGTCTATACTGGG 

 rs7269823 F: 1- CAGGTGGAGAGTAGGTCATC tGAGAGTAGGTCATCCTCTAA 

 
R: 1- TCTCCCCAGAGTGCTCTAC 

 rs6053728 F: 1- AACCCTGCAAGGAAGGTATG ACTGTTATTCCCATTTTACAGA 
  R: 1- ATCACTTAAACCTGTGTCTC   
F, Forward primer; R, Reverse primer; 1, non-templated prime tag ACGTTGGATG. 
*bases in lower case letters are non-templated bases  
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4.6 DETERMINATION OF HORMONE RECEPTOR AND HER2 STATUS  

ER and PR hormone receptors were classified as positive if the percentage of positive cells 
with nuclear staining was ≥ 10 %, higher than the threshold value today (1 %).  
    HER2 status assessment was conducted by immunohistochemistry (IHC). Samples with 
IHC score 2+ or 3+ were classified as HER2 positive (HER2+).   

4.7 STATISTICAL ANALYSES 

Statistical analyses were conducted using SPSS version 17.0. in publications I and III (SPSS 
Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.), SPSS 
version 14.0. in publication II (SPSS Inc. Released 2006. SPSS Statistics for Windows, 
Version 14.0. Chicago: SPSS Inc.), and SPSS version 19.0. in publication IV (IBM Corp. 
Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.).  
    RFS was assessed as time from diagnosis to time of first relapse (locoregional relapse, 
contra-lateral breast cancer or metastatic disease) or the end of follow-up. The cause of 
death was categorised either as being caused by breast cancer or by other causes. OS and 
BCSS were computed from the date of diagnosis to the last follow-up date or date of 
death.  
    The impact of the studied genotypes on RFS, BCSS, and OS were analyzed by the 
univariate Kaplan-Meier method with the log-rank test. The P-values, and the hazard 
ratios (HRs) and their 95 % confidence intervals (CIs) were calculated using Cox 
proportional hazards models adjusted for potential confounders including age, stage, ER 
and PR status, and adjuvant treatments. The P-values ≤ 0.05 were considered to be 
statistically significant. The survival was estimated by using both the dominant model (the 
homozygous carriers of the wild type allele compared with the carriers of the variant 
allele) as well as the recessive model (homozygous carriers of the variant allele compared 
with the carriers of the wild type allele). All study cohorts and treatment subgroups were 
tested for Hardy-Weinberg equilibrium (HWE) using a standard χ2 test.  
    In publication II, analysis of variance (ANOVA) was used to compare continuous data. 
When the ANOVA analyses indicated a difference between groups, 2-tailed tests were 
used in the post hoc comparisons. Categorical data were compared using Fisher’s exact test. 
The significance levels for comparisons of the genotype frequencies between cases and 
controls and for the association between the genotypes and protein expression and clinical 
variables (including tumour grade and size, histologic type, nodal status, ER status, PR 
status, and HER2 status) among the cases were computed using the Armitage trend test.  
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5 Results 

 
5.1 GENERAL CHARACTERISTICS OF THE STUDY POPULATION 

Information on study subjects’ vital status at the data cut-off in February 2011 is provided 
in Figure 7. The median follow-up in the total study population was 11.8 years (range 0.1-
20.4 years). A significant proportion (159) out of the total of 442 subjects experienced a 
relapse during the follow-up. Of the 28 women who were alive with recurrence of breast 
cancer, five patients were alive with a locoregional recurrence only, and 14 patients had 
been diagnosed with a new primary cancer in the contralateral breast. One patient had a 
locoregional recurrence and a new primary cancer in the other breast. Eight patients were 
alive with metastatic disease.  
 
 
 
 
 
 

Figure 7. Flow chart describing the study subjects' vital status at the data cut-off in February 
2011. BC, breast cancer. 
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5.2 SULT1A1 RS9282861 AND SURVIVAL OF BREAST CANCER 
PATIENTS (I) 

5.2.1 SULT1A1 rs9282861 is not statistically significantly associated with the survival of 
patients treated with adjuvant chemotherapy 
Adjuvant chemotherapy was the only systemic adjuvant treatment for 76 patients. The 
chemotherapy regimens used were CMF (n=70) and CNF (n=6). The median number of 
chemotherapy cycles was 6 (range 2-6). In the univariate Kaplan-Meier analysis, the 
homozygous rs9282861 variant AA genotype (n=14) was associated with improved OS 
compared with the AG and GG genotypes (n=62) (Plog-rank=0.045). The multivariate Cox 
regression analysis adjusted for age, stage, radiotherapy, and hormone receptor status 
detected no statistically significant differences in OS (HR=0.33, 95 % CI=0.10-1.09, P=0.068) 
(Figure 8A). The dominant model did not show any survival differences.  

5.2.2 SULT1A1 rs9282861 has no statistically significant influence on the survival of 
patients receiving adjuvant tamoxifen 
Sixty five patients were treated with adjuvant tamoxifen only. The Kaplan-Meier and Cox 
regression analysis failed to reveal any statistically significant association between the 
SULT1A1 rs9282861 genotype and survival in the dominant or recessive model. In the Cox 
regression analysis there was a non-significant trend for superior OS in 18 patients with 
the variant AA genotype (HR=0.53, 95 % CI=0.27-1.08, P=0.079) (Figure 8B). Other 
covariates were age, stage, and radiotherapy.  

5.2.3 SULT1A1 rs9282861 genotype is associated with the OS of the combined patient 
population receiving adjuvant chemotherapy or tamoxifen 
There were a total of 145 patients with SULT1A1 genotype available who were treated 
with adjuvant tamoxifen (n=65), chemotherapy (n=76), or with both tamoxifen and 
chemotherapy (n=4). The univariate analysis detected a significant association between the 
homozygous rs9282861 variant AA genotype (n=33) and superior OS, and this association 
persisted in the Cox multivariate analysis (HR=0.50, 95 % CI=0.29-0.88, P=0.015) (Figure 
8C). There were no statistically significant differences in BCSS (HR=0.53, 95 % CI=0.26-
1.05, P=0.069) or RFS (HR=0.50, 95 % CI=0.29-0.88, P=0.091) with respect to the rs9282861 
genotype. Adjustments were made for age, stage, radiotherapy, and hormone receptor 
status. 

5.2.4 Prognostic significance of the SULT1A1 rs9282861 
In the univariate analysis of the 140 patients who did not receive any kind of adjuvant 
treatment, there were trends towards statistically significant differences in survival (RFS 
Plog-rank=0.053, BCSS Plog-rank=0.074, and OS Plog-rank=0.081). In the multivariate analysis 
adjusted for age and stage, the rs9282861 variant AA genotype was statistically 
significantly associated with inferior RFS (HR=0.49, 95 % CI=0.24-0.99, P=0.048) (Figure 
9A) and OS (HR=0.57, 95 % CI=0.34-0.96, P=0.034) (Figure 9C). The association with the 
variant AA genotype and inferior BCSS was not statistically significant (HR=0.44, 95 % 
CI=0.18-1.08, P=0.073) (Figure 9B).     
    The effect of the rs9282861 genotype on the survival of the total study population 
(n=412) was also examined. The univariate analyses did not reveal any significant 
associations in the survival outcomes according to the rs9282861 genotype (RFS Plog-

rank=0.40, BCSS Plog-rank=0.38, and OS Plog-rank=0.50). In addition, the rs9282861 genotype did 
not influence the survival in the patient population not receiving any medical adjuvant 
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treatment (n=230) (RFS Plog-rank=0.30, BCSS Plog-rank=0.35, and OS Plog-rank=0.32) or in the 
patients receiving only postoperative radiotherapy (n=90) (RFS Plog-rank=0.64, BCSS Plog-

rank=0.61, and OS Plog-rank=0.88).  
 
 
 
 
 
 
 
 
 
 
 
 
 
        A) OS: Adjuvant chemotherapy                 B) OS: Adjuvant tamoxifen                

 
 

 
    C) OS: Adjuvant chemotherapy or tamoxifen   

 
 

Figure 8. The association of SULT1A1 rs9282861 genotype with the survival in breast cancer 
patients in the Cox regression analysis. The OS of 76 patients receiving adjuvant 
chemotherapy (A), 65 patients receiving adjuvant tamoxifen (B), and the combined patient 
population (n=145) receiving adjuvant chemotherapy or tamoxifen (C).     
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         A) RFS: No adjuvant treatment                  B) BCSS: No adjuvant treatment 

 
  
                                       C) OS: No adjuvant treatment 

 
 
Figure 9. The Cox regression models for RFS (A), BCSS (B), and OS (C) according to the 
SULT1A1 rs2886162 genotype in 140 patients not receiving any kind of adjuvant treatment.     
 
 
5.3 GENETIC POLYMORPHISMS AND PROTEIN EXPRESSION OF NRF2 
AND SRXN1 AND THEIR ASSOCIATION WITH THE RISK AND SURVIVAL 
OF BREAST CANCER (II) 

5.3.1 NRF2 and SRXN1 genotypes associate with the risk of breast cancer 
Genomic DNA was available for genotyping in 452 breast cancer patients and 370 control 
subjects from the KBCP samples. Two functional SNPs (rs6721961 and rs6706649) and six 
TagSNPs (rs1806649, rs2886162, rs1962142, rs2364722, rs10183914, rs2706110, rs13035806) 
were analyzed for the NRF2 gene. The eight TagSNPs analyzed for SRXN1 were 
rs6085283, rs13043781, rs6076869, rs6053666, rs2008022, rs6116929, rs7269823, and 
rs6053728. The genotypes were in concordance with the HWE except for a slight deviation 
from HWE of NRF2 rs6706649 in controls (P=0.029). 
    An association with breast cancer risk was observed in breast cancer cases with NRF2 
rs6721961 and rs2706110 and SRXN1 rs6053666 genotypes. The variant homozygous 
genotypes of NRF2 rs6721961 (TT) and rs2706110 (AA) were associated with an increased 
risk of breast cancer whereas carrying the variant allele C was protective in SRXN1 
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rs6053666. There was a trend towards decreased risk of breast cancer for the NRF2 
rs13035806 variant allele G.  
     
5.3.2 NRF2 and SRXN1 protein expression 
Tumour material for tissue microarrays was available for 373 breast cancer cases. 
Cytoplasmic NRF2 positivity of high extent (>25 %) was observed in 66 % (237/361) of 
cases, whereas high extent nuclear positivity was seen in 26 % (96/365) of the samples. The 
breast tumours with lobular histology were more commonly expressing nuclear NRF2 
with high extent (47 %) than ductal breast tumours (20 %) (P=0.001).   
    Positive cytoplasmic expression of SRXN1 was found in 23 % of breast tumour samples 
(82/363). The nuclear and cytoplasmic NRF2 expressions were associated with the SRXN1 
expression (P=0.003 and P=0.008, respectively).  
     
5.3.3 NRF2 and SRXN1 SNPs and their association with protein expression 
The variant alleles of NRF2 rs1962142 and rs6721961 were associated with low extent (< 25 
%) cytoplasmic NRF2 expression and negative SRXN1 protein expression. In addition, the 
variant allele of NRF2 rs2886162 was associated with low extent cytoplasmic NRF2 
expression. 
    The SRXN1 rs6076869 variant allele T associated with high extent cytoplasmic NRF2 
expression (OR=1.927, 95 % CI=1.217-3.051, P=0.005) and with lobular histology (OR=1.83, 
95 % CI= 1.092-3.066, Pallele-specific=0.022). 
 
5.3.4 The prognostic value of NRF2 and SRXN1 genotypes 
In the Kaplan-Meier analyses, the homozygous NRF2 rs2886162 variant AA genotype, 
homozygous SRXN1 rs6116929 variant GG genotype, homozygous SRXN1 wild type 
genotypes rs7269823 AA and rs6085283 CC, and SRXN1 variant allele carriers rs2008022 
CA and AA were associated with better survival (Plog-rank=0.017, Plog-rank=0.063, Plog-rank=0.030, 
Plog-rank=0.015, Plog-rank=0.012, respectively). However, only the NRF2 rs2886162 
polymorphism remained as a significant covariant in the multivariate Cox analyses 
(HR=1.687, 95 % CI =1.047-2.748, P=0.032).  
 
5.3.5 The combined NRF2 and SRXN1 high-risk genotypes associate with worse BCSS 
The influence of the combined effect of the NRF2 and SRXN1 genotypes on the prognosis 
was also examined. Based on the Kaplan-Meier curves in the prognostic survival analyses 
the SRXN1 rs6116929, rs2008022, rs7269823, and rs6085283 risk alleles were designated as 
A, C, G, and T, respectively. The patients were divided into two groups: 0-3 risk alleles 
and 4-8 risk alleles. The Kaplan-Meier analysis showed that the patients with 4-8 risk 
alleles had a greater risk of dying from breast cancer than patients with 0-3 SRXN1 risk 
alleles (Plog-rank=0.009).  
    When also the NRF2 rs2886162 was included in the univariate combined risk factor 
analyses, a survival difference emerged between the strata defined by the rs28861612 
genotype. Carriage of rs2886162 variant allele A was associated with inferior BCSS in 
patients with 4-8 SRXN1 risk alleles (Plog-rank=0.010) whereas no survival difference was 
visible among patients homozygous for the wild type G allele.  
    In the multivariate analysis including also tumour grade, nodal status, ER and PR 
status, histological type, tumour size, and HER2 status, only nodal and HER2 status and 
the NRF2 rs2886162 genotype remained statistically significantly associated with survival. 
Patients with the homozygous rs2886162 AA variant genotype had an inferior BCSS 
(HR=1.667, 95 % CI=1.054-2.637, P=0.029). Since also NRF2 cytoplasmic and nuclear 
expression and SRXN1 protein expression were included in the multivariate analysis, 
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similar results were obtained: NRF2 rs2886162 AA genotype associated with worse BCSS 
(HR=1.693, 95 % CI =1.040-2.758, P=0.034). 
 
5.3.6 The influence of the NRF2 and SRXN1 polymorphisms on the survival according 
to the adjuvant treatment 
In the multivariate analyses, the homozygous NRF2 rs2886162 variant AA genotype was 
predictive of inferior RFS and BCSS in patients receiving adjuvant chemotherapy (n=16) 
compared with the carriers of the wild type G allele (n=63) (HR=2.83, 95 % CI=1.43-5.61, 
P=0.003, and HR=2.43, 95 % CI=1.16-5.08, P=0.019, respectively) (Figure 10A and 10B). A 
similar effect was seen in 247 patients treated with postoperative radiotherapy as the 
rs2886162 AA genotype predicted worse RFS (HR=1.68, 95 % CI=1.07-2.64, P=0.025) (Figure 
10C). The NRF2 rs2886162 genotype did not influence survival in patients who did not 
receive any kind of adjuvant treatment (n=137).    
 
 
 
 
 
 
         A) RFS: Adjuvant chemotherapy           B) BCSS: Adjuvant chemotherapy 

 
                                       C) RFS: Postoperative radiotherapy  

 
 
Figure 10. The association of the NRF2 rs2886162 genotype on the RFS (A) and BCSS (B) of 
patients treated with adjuvant chemotherapy (n=79) and on the RFS (C) of patients treated 
with postoperative radiotherapy (n=247) in the Cox regression model. 
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    The carriage of the SRXN1 rs6116929 wild type allele A, or variant allele G of SRXN1 
rs7269823, or SRXN1 rs6085283 variant allele T predicted a worse RFS (HR=1.96, 95 % 
CI=1.17-3.27, P=0.010, HR=1.72, 95 % CI=1.16-2.54, P=0.007, and HR=1.72, 95 % CI=1.08-
2.75, P=0.022, respectively) and BCSS (HR=1.74, 95 % CI=1.00-3.00, P=0.049, HR=1.56, 95 % 
CI=1.01-2.41, P=0.045, and HR=1.75, 95 % CI=1.04-2.95, P=0.036, respectively) in patients 
treated with postoperative radiotherapy. In the same adjuvant treatment group, 
homozygosity for the variant allele C of SRXN1 rs6053666 predicted worse RFS (HR=1.62, 
95 % CI=1.06-2.46, P=0.026) and the homozygous SRXN1 rs2008022 wild type CC genotype 
was associated with inferior BCSS (HR=1.73, 95 % CI=1.09-2.74, P=0.020). The rs2008022 
CC genotype was related with the worse BCSS also in patients not receiving adjuvant 
treatments (HR=3.39, 95 % CI=1.13-10.14, P=0.029). 
 
 
5.4 PREDICTIVE SIGNIFICANCE OF MNSOD AND XPD POLYMORPHISMS 
IN PATIENTS TREATED WITH ADJUVANT TAMOXIFEN OR 
CHEMOTHERAPY (III)  
 
5.4.1 MnSOD rs4880 genotype and survival after adjuvant tamoxifen 
There were 64 patients who received adjuvant tamoxifen in the cohort analyzed for the 
rs4880 genotype. The univariate Kaplan-Meier survival curves showed better RFS (Plog-

rank=0.014) and BCSS (Plog-rank=0.026) for patients carrying the wild type A allele. The 
multivariate analyses adjusted for age, stage, and radiation therapy detected a significant 
difference in RFS and BCSS favoring patients with the AA or AG genotype (HR=0.36, 95 % 
CI=0.14-0.91, P=0.030 and HR=0.33, 95 % CI=0.12-0.91, P=0.032, respectively) (Figure 11A 
and 11B). The MnSOD rs4880 had no effect on OS. 
 
            A) RFS: Adjuvant tamoxifen                     B) BCSS: Adjuvant tamoxifen                                                       

 
 
Figure 11. The Cox regression model survival curves for RFS (A) and BCSS (B) according to 
the MnSOD rs4880 genotype in 64 patients treated with adjuvant tamoxifen.  
 
5.4.2 XPD rs13181 genotype associates with survival in patients receiving adjuvant 
tamoxifen or chemotherapy 
In the univariate analysis, the XPD rs13181 genotype had a significant effect on OS in 65 
patients receiving adjuvant tamoxifen (Plog-rank=0.036), whereas there was no statistically 
significant association for RFS or BCSS (Plog-rank=0.11 and Plog-rank=0.16, respectively). 
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    In the multivariate analysis of tamoxifen treated patients adjusted for age, stage, and 
radiotherapy, the homozygous rs13181 wild type AA genotype was predictive for 
improved RFS (HR=0.36, 95 % CI=0.13-1.00, P=0.049) (Figure 12A), and BCSS (HR=0.30, 95 
% CI=0.10-0.95, P=0.040) (Figure 12B). Differences in the OS were nearly statistically 
significant favoring patients with the rs13181 variant AA genotype (HR=0.48, 95 % 
CI=0.23-1.00, P=0.051) (Figure 12C).  
    In the multivariate analysis of patients receiving adjuvant chemotherapy (n=74), the 
XPD rs13181 AA and AC genotypes were associated with better RFS (HR=0.42, 95 % 
CI=0.19-0.94, P=0.034) (Figure 12D). Adjustments were made for age, stage, radiotherapy, 
and hormone receptor status. 
 
           A) RFS: Adjuvant tamoxifen                    B) BCSS: Adjuvant tamoxifen 

 
 

         C) OS: Adjuvant tamoxifen                      D) RFS: Adjuvant chemotherapy 

 
 
Figure 12. XPD rs13181 genotype and Cox regression model survival curves for RFS (A), BCSS 
(B), and OS (C) in 65 patients receiving adjuvant tamoxifen, and for RFS in 74 patients 
receiving adjuvant chemotherapy (D).  
 
5.4.3 The combined MnSOD rs4880 and XPD rs13181 genotypes influence the survival 
of patients receiving adjuvant tamoxifen 
Based on the analysis of the survival curves, HR’s, and 95 % CIs, 58 cases out of 64 
tamoxifen treated patients were designated to carry at least one genotype associated with 
favorable survival outcome, e.g., MnSOD rs4880 AA, MnSOD rs4880 AG, and XPD 
rs13181 AA. In the multivariate analysis, the carriage of at least one low-risk genotype was 
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associated with improved RFS (HR=0.20, 95 % CI=0.07-0.58, P=0.003), BCSS (HR=0.20, 95 % 
CI=0.06-0.65, P=0.008), and OS (HR=0.28, 95 % CI=0.10-0.76, P=0.012) in patients receiving 
adjuvant tamoxifen (Figures 13A, 13B, and 13C, respectively). 
    Carrying both the MnSOD rs4880 A allele and the XPD rs13181 AA genotype (n=14) 
seemed to be favorable in terms of BCSS, but the difference was not quite statistically 
significant in the multivariate analysis (HR=0.29, 95 % CI=0.08-1.02, P=0.054) (Figure 13D). 
    In the tamoxifen treated patients, the median overall survival was 12.3 years in patients 
with both the MnSOD rs4880 and XPD rs13181 low-risk genotypes, 8.0 years in patients 
with one low-risk genotype, and only 3.3 years in patients carrying no low-risk genotypes. 
    The studied MnSOD and XPD genotypes did not associate with survival in the total 
study population (n=396) or in the patients who did not receive adjuvant treatments 
(n=133).    
 
   
          A) RFS: Adjuvant tamoxifen                  B) BCSS: Adjuvant tamoxifen    

 
 
        C) OS: Adjuvant tamoxifen                       D) BCSS: Adjuvant tamoxifen 

 
 
Figure 13. The Cox regression model survival curves for the combined MnSOD rs4880 and XPD 
rs13181 according to the carriage of low-risk genotypes (rs4880 AA, rs4880 AG, or rs13181 
AA) in the tamoxifen treated patient population (n=64). The RFS, BCSS, and OS in patients 
carrying at least one low-risk genotype were compared with survival of patients carrying no 
low-risk genotypes (A, B, and C, respectively). (D) The BCSS curves for carrying the low-risk 
MnSOD rs4880 A allele and XPD rs13181 AA genotype versus carrying 0-1 low-risk genotypes. 
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5.5 THE EFFECT OF THE XRCC1 RS25487 POLYMORPHISM ON THE 
SURVIVAL OF BREAST CANCER PATIENTS (IV) 

5.5.1 Prognostic significance of the XRCC1 rs25487  
In the cohort of all eligible patients (n=411) the univariate and multivariate analyses 
detected inferior BCSS for patients carrying the homozygous XRCC1 rs255487 variant AA 
genotype (log-rank=0.032, HR=1.95, 95 % CI=1.15-3.32, P=0.014) (Figure 14A). RFS and OS 
did not differ significantly, neither were there any significant survival differences 
according to the rs25487 genotype in the subgroup of patients who did not receive any 
kind of adjuvant treatment.  

5.5.2 XRCC1 rs25487 polymorphism predicts the outcome in patients receiving 
postoperative radiotherapy or adjuvant chemotherapy 
The homozygous rs25487 variant AA genotype was associated with worse BCSS (HR=2.03, 
95 % CI=1.07-3.85, P=0.031) (Figure 14B) and OS (HR=1.85, 95 % CI=1.06-3.24, P=0.030) 
(Figure 14C) in the multivariate analysis of 238 patients treated with postoperative 
radiotherapy. HRs were adjusted for age, stage, chemotherapy, and hormonal treatment.  
    In addition, carrying the rs25487 AA genotype emerged as a negative predictor of BCSS 
(HR=2.79, 95 % CI=1.01-7.67, P=0.047) (Figure 14D) in patients who received adjuvant 
chemotherapy (n=75). Adjustments in the multivariate analysis were made for age, stage, 
and radiotherapy. The rs25487 genotype did not influence the survival of patients treated 
with adjuvant tamoxifen.   
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          A) BCSS: Total study population            B) BCSS: Postoperative radiotherapy 

 
  
         C) OS: Postoperative radiotherapy            D) BCSS: Adjuvant chemotherapy      

 
 
Figure 14. The Cox regression model survival curves according to the XRCC1 rs25487 
genotype. (A) The BCSS in the total study population (n=411). (B) and (C): The BCSS and OS 
in patients receiving postoperative radiotherapy (n=238), respectively. (D) The BCSS in 
patients treated with adjuvant chemotherapy (n=75). 
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6 Discussion 

The purpose of this work was to study polymorphisms in the genes involved in drug 
metabolism, oxidative stress, and DNA repair and to examine the influence of this genetic 
diversity on the outcome of patients with early breast cancer. During the median follow-
up of 11.8 years 45 % of patients in the study cohort have died due to breast cancer.  
    It should be borne in mind that 20 years ago the treatment of breast cancer was different 
from the current practice. In the 1990s, breast cancer was operated most often with 
mastectomy and adjuvant chemotherapy and hormonal therapies were given more 
infrequently. In Kuopio University Hospital, the implementation of postoperative 
radiotherapy was rather similar to the current practice. For example, in the present study, 
the majority of patients who had been operated with ablative surgery and had N1 status 
received locoregional radiotherapy (122 out of 142 patients). Even though the prognosis 
has improved gradually due to more efficient adjuvant therapies, the recurrence of the 
malignancy still remains a clinical challenge.     

6.1 ASSOCIATION OF THE SULT1A1 RS9282861 POLYMORPHISM WITH 
SURVIVAL OF BREAST CANCER PATIENTS 

6.1.1 Predictive role of SULT1A1 rs9282861  
SULT1A1 is a phase II enzyme that facilitates the elimination of tamoxifen. Hence, 
alterations in the excretion of active metabolites of tamoxifen might influence the 
effectiveness of adjuvant hormonal therapy.     
    The purpose of the first study (publication I) was to analyze whether the SULT1A1 
rs9282861 polymorphism influences the outcome of breast cancer patients. The results 
suggest that the homozygous SULT1A1 rs9282861 variant AA genotype is associated with 
improved OS of patients treated with adjuvant chemotherapy or tamoxifen when 
compared with patients carrying the wild type G allele. The result was statistically 
significant only in the combined analysis of these two adjuvant treatment groups, while 
separate analyses of patients receiving either adjuvant tamoxifen or chemotherapy did not 
reveal statistically significant associations. The relatively small number of patients in the 
separate treatment groups might explain why the difference between OS did not reach 
statistical significance in these analyses. 
     
6.1.2 SULT1A1 as a modifier of tamoxifen metabolism 
The present results are consistent with the hypothesis that the homozygous SULT1A1 
rs9282861 variant AA genotype is associated with lower catalytic activity and poorer 
thermostability of the enzyme compared with the wild type allele G (Raftogianis et al., 
1999). Reduced elimination of active metabolites of tamoxifen by phase II metabolism 
could lead to improved clinical efficacy. However, previous studies have yielded 
inconsistent results (Nowell et al., 2002; Choi et al., 2005; Nowell et al., 2005; Wegman et 
al., 2005; Wegman et al., 2007). In the study of Wegman et al., there was a trend towards a 
lower risk of distant recurrence among carriers of the rs9282861 wild type GG genotype in 
the group of patients receiving tamoxifen (Wegman et al., 2005). Another study reporting 
improved OS of breast cancer patients carrying the rs9282861 wild type G allele treated 
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with tamoxifen suggested this result was attributable to the reabsorption of the sulfated 
form of 4-OH-TAM in the kidney. Further desulfation of this compound in the breast 
tumour by steroid sulfatase might extend the duration of action of the active metabolite, 4-
OH-TAM (Nowell et al., 2002). Another possible explanation was that the high-activity 
allele induces global expression of the SULT1A1 enzyme, followed by increased 
elimination of other potentially harmful substrates, including estrogenic compounds. A 
subsequent study suggested that these findings, contradictory to the previous hypothesis, 
might be explained by the observation that sulfated tamoxifen mediates apoptosis in 
breast cancer cell lines expressing SULT1A1 (Mercer et al., 2010).  
    The gene copy number variation (CNV) may represent an additional source of 
variability in the metabolic activity of an enzyme. There are studies reporting that an 
increasing number of SULT1A1 copies correlates with elevated SULT1A1 activity 
(Hebbring et al., 2007; Yu et al., 2013). However, in two studies investigating mainly 
Caucasian breast cancer patients the SULT1A1 CNV was not found to influence the levels 
of tamoxifen and its metabolites or to associate with the DFS of patients receiving adjuvant 
tamoxifen (Gjerde et al., 2008; Moyer et al., 2011). 
    The outcome of tamoxifen therapy is probably not solely determined by a single SNP 
but instead by a combination of several genetic factors. In addition to sulfation by SULTs, 
glucuronidation of tamoxifen is a route of substrate elimination through the bile. 
Glucuronidation is probably the most effective way to excrete tamoxifen and its 
derivatives (Lien et al., 1989). In fact, the UGT2B15 high activity genotype has been 
associated with an increased risk of recurrence and poorer survival in a group of 
tamoxifen treated patients (Nowell et al., 2005). Furthermore, several other UGTs 
(UGT1A4, UGT2B7, UGT1A8 and UGT1A10) have been reported to be active against 4-
OH-TAM (Sun et al., 2006; Sun et al., 2007).  
    It is noteworthy that in the studies of Nowell et al. and Wegman et al. (Nowell et al., 
2002; Wegman et al., 2005), the genotyping was made from tumour tissue, which may 
carry a risk of genotype misclassification. However, the most plausible reasons for the 
discordant results between different studies are heterogeneity in the study populations 
and a lack of statistical power due to small sample sizes.  
    Polymorphisms associated with the CYP genes, especially CYP2D6, may also have a 
substantial impact on the outcome of tamoxifen therapy; CYP2D6 contributes to the 
formation of 4-OH-TAM in human liver (Dehal and Kupfer, 1997). Moreover, tamoxifen is 
metabolized to ND-TAM in a CYP-dependent pathway by CYP3A4 and secondarily to 
endoxifen by CYP2D6, and decreased CYP2D6 enzyme activity has been associated with 
worse event-free survival (EFS) and disease-free survival in patients treated with adjuvant 
tamoxifen (Schroth et al., 2009), although contradictory results have also been reported 
(Wegman et al., 2005). This complexity of tamoxifen metabolism may partly explain the 
conflicting results in different studies. 
    There was no specific data on the other medications used by the patients available in 
our study. For example, concomitant use of CYP2D6 inhibitors, including selective 
serotonin reuptake inhibitor (SSRI) antidepressants, especially the highly potent CYP2D6 
inhibitor, paroxetine, may reduce the efficacy of tamoxifen (Jin et al., 2005; Kelly et al., 
2010). However, the influence of this potential confounding factor is likely to be minor 
since the use of SSRIs was uncommon in the 1990s. 
 
6.1.3 SULT1A1 and the pharmacokinetics of chemotherapy 
Cyclophosphamide is an alkylating agent metabolized via the CYP450 enzymes into 4-
hydroxycyclophosphamide and aldophosphamide (Zhang et al., 2005). These are further 
β-eliminated by albumin and other proteins to form two active metabolites, acrolein and 
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phosphoramide mustard. Subsequently, an alkyl group is added to the guanine base of 
DNA which leads to an inhibition of DNA replication. The cytotoxic effects of 
cyclophosphamide are in part mediated by ROS generation (Sulkowska and Sulkowski, 
1997; O'Toole et al., 2009).     
    There do not appear to be any studies which have investigated the role of SULT1A1 
polymorphism in the pharmacokinetics of chemotherapeutic regimens, and the 
mechanism of this potential association is unclear. It is known that heterocyclic amines are 
activated by SULTs (Glatt, 2000). The sulfonate group is often transferred to oxygen, 
which is frequently in the form of a hydroxyl group (Glatt, 2000).  In theory, 4-hydroxy-
cyclophosphamide might serve as a substrate for SULT1A1 and possessing the high-
activity SULT1A1 allele would increase the rate of elimination of cyclophosphamide, thus 
decreasing the individual’s exposure to its cytotoxic effects. However, none of the 
chemotherapeutic drugs given in the CMF regimen are known to act as substrates to 
SULT1A1. In addition, to date there are neither pharmacokinetic nor in vitro data available 
to support this hypothesis. 
         
6.1.4 SULT1A1 rs9282861 and radiotherapy 
Locoregional radiotherapy was given to 77 patients (95.1 %) receiving chemotherapy and 
to 47 patients (72.3 %) treated with tamoxifen. In the univariate analysis, the rs9282861 
genotype was not associated with any differences in survival among patients who were 
given adjuvant radiotherapy but no adjuvant chemotherapy or hormonal therapy (n=90). 
     
6.1.5 SULT1A1 rs9282861 as a prognostic factor 
The multivariate analyses for survival in patients with no adjuvant treatment suggest that 
this polymorphism might also have a prognostic effect. There were statistical significant 
differences in RFS and OS, while the difference in BCSS did not quite reach statistical 
significance. The rs9282861 variant AA genotype was associated with worse outcome, the 
opposite of that found in patients receiving adjuvant tamoxifen or chemotherapy.  
    By a strict definition, a prognostic factor is a measurable clinical or biological 
characteristic that defines the natural course of a disease in an untreated individual. For 
example, HER2 amplification is both a prognostic and predictive factor in breast cancer. In 
untreated patients, HER2-positivity is associated with inferior survival (Slamon et al., 
1987). On the other hand, HER2-targeted therapies greatly improved the survival of 
patients with HER2 amplification (Joensuu et al., 2009; Swain et al., 2015).  
    In the present study, the improved survival of untreated patients carrying the high-
activity wild type G allele might reflect their more efficient capacity to detoxify deleterious 
chemicals and hormonal compounds, including endogenous estrogen (Falany et al., 1993; 
Ozawa et al., 1995). 
 
 
6.2 OXIDATIVE STRESS 
Oxidative stress seems to play an important role in the origin and progression of cancer. 
On the other hand, ROS formation is an important mechanism of tumour cell destruction 
mediated by radiotherapy and other types of cancer treatments. In theory, antioxidative 
mechanisms may act undesirably in the context of malignant disease as they are able to 
neutralize the ROS produced by cancer treatments. In the present study, several 
polymorphisms involved with pathways of oxidative stress were associated with breast 
cancer risk and survival.     
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6.2.1 NRF2: influence on the risk and outcome of breast cancer 
Under basal redox conditions, the antioxidative transcriptional factor NRF2 is bound by 
the repressor protein Keap1. NRF2 is then polyubiquitylated by Cul3 and is further 
degraded through the ubiquitin proteasome pathway.  In conditions of oxidative stress, 
Keap1 becomes inactivated and NRF2 will be translocated into the nucleus. Binding of 
NRF2 to the ARE activates several antioxidant and detoxifying genes, one of which is 
SRXN1, a member of the antioxidant protein family.   
    NRF2 seems to be an important regulator of the cellular antioxidant defense systems. 
There are few previous studies examining the NRF2 and SRXN1 polymorphisms and their 
association with breast cancer risk and outcome. It was found that homozygosity for the 
NRF2 rs6721961 variant allele T associated with an increased risk for breast cancer. The 
rs6721961 variant allele T also associated with low-extent cytoplasmic NRF2 protein 
expression and negative SRXN1 expression. In line with this result, rs6721961 has been 
predicted to affect ARE-like promoter binding sites and basal level expression of NRF2 
which ultimately results in attenuated gene transcription (Marzec et al., 2007). These 
features coupled with down-regulation of other NRF2 target genes could lead to increased 
cancer susceptibility. In support of the present findings, this SNP has also been linked 
with an increased risk of lung cancer (Suzuki et al., 2013).  
    In addition, the variant homozygous genotype of rs2706110 was associated with an 
increased risk of breast cancer. The functional consequences of this polymorphism have 
not been fully clarified. Carrying the variant rs2706110 allele has been associated with 
reduced Keap1 expression in human olfactory neurosphere-derived (hONS) cells of 
patients with Parkinson’s disease (Todorovic et al., 2015). However, there were no 
differences in cellular viability between the wild type and variant type cells after exposing 
these cells to the ROS generating agent, rotenone. 
    Estrogen exposure is an established risk factor of breast cancer (Yager and Davidson, 
2006). Treatment of MCF-10A immortalized breast stem cells with estrogen metabolite 4-
hydroxyestradiol has been shown to decrease the NRF2 transcript and induce mutations. 
This effect was significantly reduced as the cells were treated with NRF2 inducer shikonin 
(Zhang et al., 2014). In addition, estrogen has been reported to up-regulate NRF2 and 
heme oxygenase 1 (HO-1) through the PI3K/glycogen synthase kinase 3 beta (GSK3β) 
pathway in MCF-7 cells (Wu et al., 2014b).    
    NRF2 is believed to be one of the key regulators of resistance to radiation and 
chemotherapy. Oncogenic gain-of-function mutations in NRF2 and loss-of-function 
mutations in Keap1 lead to a sustained up-regulation and nuclear accumulation of NRF2. 
NRF2 subsequently increases the expression of genes known to be involved with radiation 
sensitivity including HO-1, NADPH dehydrogenase, quinone 1 (NQO1), PRX-1, and 
murine double minute (Mdm2). In addition, cross-talk of NRF2 with other genes related to 
radiation resistance including hypoxia-inducible factor 1 (HIF-1), NF-κB, CDK inhibitor 
p21Cip1/WAF1, and ATM may contribute to the decreased sensitivity to radiotherapy.  
    It was observed that the NRF2 rs2886162 variant allele A was associated with low-extent 
cytoplasmic NRF2 expression. The homozygous rs2886162 variant AA genotype was also 
associated with worse RFS and BCSS in patients receiving adjuvant chemotherapy and 
inferior RFS in patients treated with postoperative radiotherapy. As the patients who 
underwent only the operative treatment of breast cancer were analyzed, there were no 
differences in survival with respect to the NRF2 rs2886162 status. At the moment, it is not 
known what consequences the rs2886162 polymorphism may evoke on the NRF2 activity. 
In theory, a low cytoplasmic level of NRF2 might reflect the response to oxidative stress as 
NRF2 moves to the nucleus under conditions of oxidative stress.  
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    One reason for cancer recurrence after surgery and adjuvant therapies is the existence of 
resistant cancer stem cells (CSCs). In comparison with non-stem cells, CSCs are associated 
with lower levels of ROS, contributing to radiation resistance in in vitro and in vivo breast 
cancer models (Diehn et al., 2009). NRF2 is an essential protein in promoting homeostasis 
of intestinal and hematopoietic stem cells (Hochmuth et al., 2011; Tsai et al., 2013). The 
substrate adaptor sequestome 1 protein, p62, is a linker that induces the dissociation of the 
NRF2-Keap1 complex. In a study investigating the NRF2 pathways in CSC-enriched 
mammospheres, it was found that silencing of p62 suppressed the NRF2 activation. 
Moreover, NRF2 knockdown resulted in increased cell death and prevented the 
development of chemotherapy resistance. It was also observed that attenuation of NRF2 
activity led to decreased expression of efflux transporters compared with the control 
mammospheres (Ryoo et al., 2015). In support of NRF2 involvement in drug resistance, the 
MCF-7 cell lines resistant to doxorubicin (MCF-7/DOX) have been found to have elevated 
levels of NRF2, HO-1, and NQO1. This resistance could be partially reversed by the NRF2 
small interfering RNA (siRNA) (Zhong et al., 2013).  
    Resistance to tamoxifen treatment has been linked with an increased expression of 
NRF2-dependent antioxidative proteins in vitro but this effect was not coupled with the 
deregulation of the ER (Kim et al., 2008). However, no associations were observed here 
between the NRF2 genotype and the outcome of tamoxifen treated patients.  
    It has also been suggested that there is a direct interaction between HER2 and NRF2. 
There is evidence that constitutively activated HER2 enhances the NRF2 pathway in MCF-
7 breast cancer cells, and HER2 and NRF2 cooperatively up-regulate the expression of 
various detoxifying and chemotherapy resistant enzymes including glutathione-S-
transferases A2 and P1 (GSTA2/GSTP1), CYP3A4, HO-1, and multidrug resistance 
proteins 1 and 5 (MRP1/MRP5) (Kang et al., 2014).  
    HER2 status was included in the present multivariate analysis examining the prognostic 
influence of the studied NRF2 and SRXN1 polymorphisms, and it was significantly 
associated with BCSS.  As described previously, the cases with IHC score 2+ or 3+ were 
regarded as HER2+. However, an IHC score 2+ for HER2 is considered as equivocal and it 
is recommended to confirm the results by in situ hybridization (ISH) (Wolff et al., 2013). 
This shortcoming should be taken into account while evaluating the present results. HER2 
status was not included in the survival analyses for adjuvant treatment subgroups. In 
addition, HER2-targeted therapies were not available in the adjuvant setting at the time of 
this study.  
    The NRF2-induced antioxidant machinery is a complex network of genes and proteins. 
Not only the NRF2 itself but also Keap1, the adaptor protein Cul3, and the reactions 
mediated by NF-κB, for example, may exert a remarkable influence on the responses to 
oxidative stress. Loss-of-function mutations in Keap1 may lead to elevations in the cellular 
antioxidant level (Singh et al., 2006). Indeed, polymorphisms in Keap1 have been 
associated with risk and survival of breast cancer (Hartikainen et al., 2015).  
    Overexpression of Cul3 has been reported to associate with depleted levels of NRF2 
expression in breast cancer cell lines, and the Cul3-siRNA-silenced MCF-7 cell lines were 
more resistant to both doxorubicin and paclitaxel (Loignon et al., 2009). However, that 
study only examined the NRF2 expression from nuclear or cytoplasmic extracts without 
specifying the messenger RNA (mRNA) and protein level results according to the 
subcellular location (Loignon et al., 2009).  
    In the present cohort of breast cancer patients, 66 % of cases had high extent cytoplasmic 
positivity for NRF2.  High nuclear positivity was found in 26 % of cases, this being 
significantly more common in lobular subtypes. In the literature, there is inconsistency 
regarding the NRF2 expression level in breast tumour cells (Loignon et al., 2009; Syed 



56 
 

 

Alwi et al., 2012; Funes et al., 2014). Different methods applied in the 
immunohistochemical analyses and their interpretation may in part account for the 
variability in the results of the studies reporting protein expressions.  
    Several studies have also shown that molecular subtypes of breast cancer have unique 
patterns and pathways of gene expression. It has been observed that NRF2 is 
constitutively residing and activated in the nucleus of dedifferentiated, basal type breast 
cancer cells, leading to increased ROS scavenging and multidrug resistance (MDR) (Del 
Vecchio et al., 2014). The protein kinase RNA-like endoplasmic reticulum kinase (PERK) 
seems to activate NRF2 and its downstream signaling even in the absence of oxidative 
stress. In support of this in vitro finding, in xenograft models of basal type tumours with 
MDR, it has been that the PERK inhibition reduced the expression of antioxidant proteins 
and significantly reduced the size of the tumours when applied in combination with 
doxorubicin. On the other hand, the PERK inhibition did not exert any effect on the 
efficacy of chemotherapy in the tumours of luminal type.  
    It should also be acknowledged that the protein expression analyses of tumour 
specimens biopsied at the time of diagnosis or surgery do not necessarily correlate reliably 
with the protein expression after exposure to ROS generating cancer therapies. Oxidative 
stress may also modulate the subcellular localization of NRF2 and thereby alter the redox 
balance.  
    Considering the mounting evidence that NRF2 has a distinct role both in the evolution 
of malignancy as well as resistance to cancer therapies, pharmacological modulators have 
been developed to address these issues. Some NRF2 activators are plant-derived 
phytochemicals such as curcumin, lycopene, and garlic organosulfur compounds (Kensler 
and Wakabayashi, 2010). The synthetic NRF2 activators include oltipraz and dimethyl 
fumarate (DMF). These have already been tested for chemoprevention and treating 
various diseases in animal models and in humans, but with inconclusive results (Kensler 
et al., 1998; Kelley et al., 2005; Ashrafian et al., 2012; Gold et al., 2012). DMF has been 
approved by the FDA and European Medicines Agency (EMA) for the treatment of 
multiple sclerosis (MS) after it was observed to decrease the annual rate of MS relapses 
(Gold et al., 2012).   
    Interestingly, following promising results emerging from a study investigating the 
activity of DMF in several glioma models (Ghods et al., 2013), a phase I study is recruiting 
patients with newly diagnosed glioblastoma multiforme to be treated with DMF, 
temozolomide and radiotherapy (ClinicalTrials.gov Identifier: NCT02337426). In the study 
of glioma cell lines, it was also observed that DMF suppressed the activation of NF-κB 
(Ghods et al., 2013). While it could seem unreasonable to expect therapeutic tumour 
responses by activating NRF2 and other antioxidant proteins, the favorable effects may be 
explained by NRF2-independent,  NF-κB-mediated mechanisms of action.  
    Several molecules have been found to inhibit NRF2, including brusatol, ascorbic acid, 
and all-trans retinoic acid (Tarumoto et al., 2004; Wang et al., 2007; Ren et al., 2011). 
Brusatol, a component of Brucea javanica seeds, has been shown to sensitize cancer cells to 
several chemotherapeutic agents both in vivo and in vitro (Ren et al., 2011). However, it 
should be taken into account that while NRF2 inhibitors might enhance the destruction of 
tumour cells, they also may increase the vulnerability of the non-target normal cells.    

6.2.2 The association of the SRXN1 polymorphisms on the risk and outcome of breast 
cancer 
SRXN1 is considered mainly as an antioxidant. In the present analyses for breast cancer 
risk, the SRXN1 rs6053666 variant allele C was protective. In addition, carrying the 
rs6053666 variant allele C was associated with worse RFS in patients receiving adjuvant 
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radiotherapy. The rs6053666 has been predicted to participate in splicing regulation. No 
exonic splicing enhancer (ESE)-binding sites have been predicted for the wild type T allele, 
whereas three ESE-binding sites are predicted for the variant allele C (FastSNP). In theory, 
defects in splicing might disturb the correct translation of RNA for a normally functioning 
SRXN1 protein. As SRXN1 has anti-oxidative actions, a reduced capacity to tolerate 
oxidative stress caused by radiation might explain the superior RFS of breast cancer 
patients carrying the rs6053666 wild type TT genotype compared with patients carrying 
the variant C allele.    
    Four SRXN1 polymorphisms (rs6085283, rs2008022, rs6116929, and rs7269823) 
associated with BCSS in all patients with invasive breast cancer in the univariate analysis. 
The same polymorphisms were independently associated with BCSS in the Cox regression 
analysis of patients treated with postoperative radiotherapy. When analyzing the patients 
who did not receive any kind of adjuvant treatment, only the rs2008022 associated 
statistically significantly with a lowered risk of breast cancer death. Thus, the influence of 
SRXN1 2008022 on BCSS appeared to be prognostic whereas the improved BCSS 
associated with the other SRXN1 genotypes in the whole study population might reflect 
the tumour response to radiotherapy. Interestingly, an in vivo study has shown that 
proton-irradiation of mice significantly up-regulated the SRXN1 expression in liver 
whereas no changes were discovered after electron therapy (Gridley et al., 2011).  
However, the biological functions of the studied SRXN1 polymorphisms still remain to be 
elucidated.     
         
6.2.3 Predictive significance of MnSOD rs4880 in breast cancer patients treated with 
adjuvant tamoxifen 
MnSOD is one of the most important defense enzymes combatting oxidative stress. As far 
is known, there were no previous clinical studies investigating the influence of MnSOD 
rs4880 genotype on the survival of breast cancer patients treated with tamoxifen 
monotherapy. In the present study, tamoxifen treated patients carrying the rs4880 wild 
type AA genotype had improved RFS and BCSS compared with the patients carrying the 
rs4880 variant G allele.  These results have been corroborated by a subgroup analysis of 
Norwegian patients receiving adjuvant cyclophosphamide-based chemotherapy. The 
rs4880 wild type A allele was associated with improved 10-year BCSS in ER+ patients 
receiving both adjuvant chemotherapy and tamoxifen (Glynn et al., 2009). These parallel 
findings are supported by the data showing that the G-MnSOD precursor results in 30-40 
% higher activity of human MnSOD in comparison with the A-MnSOD precursor (Sutton 
et al., 2003), although no significant differences in survival were observed in the other 
treatment subgroups. 
    In addition to its antiestrogenic effects in breast tissue, tamoxifen has been shown to 
induce ROS formation in ER+ breast cancer cells in vitro (Kallio et al., 2005). It has also 
been postulated that ERβ engagement by tamoxifen may regulate the intrinsic apoptosis 
process (Razandi et al., 2013). Tamoxifen is known to bind to the mitochondrial ERβ as an 
antagonist in MCF-7-BK (tamoxifen sensitive) cells and to increase ROS production and 
apoptosis. Interestingly, tamoxifen seemed to act as an agonist at mitochondrial ERβ in 
MCF-7-BK-TR (tamoxifen resistant) cells. It is unclear why tamoxifen acts as an ERβ 
agonist in these cells. Furthermore, MnSOD knockdown in the presence of tamoxifen 
caused a 15-fold increase in the number of cells undergoing apoptosis in MCF-7-BK-TR 
cells, indicating that MnSOD activity can be associated with tamoxifen resistance.       
    Inhibition of MnSOD could offer a compelling way to overcome resistance against 
tamoxifen. Indeed, in a study investigating silencing of MnSOD by siRNA-delivering 
nanoparticles and tamoxifen treatment, the combination of gene silencing and hormonal 
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therapy restored cellular apoptosis induced by tamoxifen in vitro and attenuated tumour 
progression in an in vivo model of nude mice (Cho et al., 2013). Tamoxifen has also been 
demonstrated to target liver mitochondria in an ER-independent manner (Moreira et al., 
2006) and it has induced ROS production and apoptosis in ER- ovarian cancer cells (Ferlini 
et al., 1999). 
    MnSOD does not work alone but is a part of a chain of antioxidative enzymes. As 
MnSOD catalyzes O2 into the less toxic H2O2, this compound’s effects may be still be 
damaging unless H2O2 is rapidly removed by CAT or GPX. On the other hand, H2O2 can 
be converted into highly deleterious hydroxyl radicals via myeloperoxidase (MPO). Thus, 
MnSOD seems to have a pivotal role as it both generates and catabolizes ROS and the 
balance between these opposite actions may be affected by the activities of CAT and MPO. 
Interestingly, the MnSOD GG genotype has been observed to increase breast cancer risk 
alone or in combination with the GPX homozygous variant TT genotype 
(leucine198leucine) (Cox et al., 2006; Liu et al., 2012).  
    The effect of MnSOD, GSTP1, and MPO polymorphisms on the outcome was studied in 
95 patients with metastatic breast cancer (Bewick et al., 2008). The MnSOD rs4880 wild 
type AA genotype was associated with worse PFS and BCSS, and this effect was further 
accentuated when the GSTP1 rs1695 was included in the analyses. It was postulated that 
the more favourable outcome in patients with the variant G allele might derive from the 
increased DNA damage caused by H2O2 and hydroxyl radicals. In another study 
evaluating the association between MnSOD rs4880, CAT rs1001179, and MPO rs2333227 
polymorphisms and the outcome of 279 women including also patients with metastatic 
breast cancer, there was a non-significant trend towards better OS among patients with the 
homozygous rs4880 GG genotype carriage compared with those with at least one A allele 
(Ambrosone et al., 2005). Moreover, the patients with combined homozygous MnSOD 
rs4880 GG and high-activity MPO GG genotypes and thereby capable of generating higher 
levels of ROS had a significantly reduced risk of death compared with patients carrying 
other genotype combinations. 
    Resistance to anoikis (apoptosis resulting from loss of cell-matrix interactions) has been 
proposed to be one of the mechanisms promoting metastases. The glucose consumption 
was decreased and levels of ROS were elevated in human mammary epithelial cells 
cultured under non-adherent conditions (Schafer et al., 2009). These changes leading to 
cell death could be prevented by anti-oxidants. Interestingly, MnSOD expression has been 
found to be higher in human breast cancer metastases compared with primary tumours 
(Kamarajugadda et al., 2013). Matrix detachment of suspended human mammary 
epithelial cells was shown to activate NF-κB which in turn induced MnSOD expression, 
whereas inhibition of NF-κB or MnSOD enhanced anoikis (Kamarajugadda et al., 2013). It 
was hypothesized that detachment-induced MnSOD was counteracting the accumulation 
of ROS in the mitochondria and inhibiting anoikis. 
    The present study did not include analyses of MnSOD protein expression. However, in 
two previous reports, the MnSOD transcript levels or MnSOD protein levels did not 
associate with PFS or OS of breast cancer patients treated with adjuvant chemotherapy 
(Sgambato et al., 2009; Hubackova et al., 2012).   
    The influence of tamoxifen on the apoptotic process may depend on the concentration of 
tamoxifen. Tamoxifen has been reported to induce either proliferation or apoptosis in ER-
negative cells in vitro, depending on the dose (Ferlini et al., 1999). Low concentrations (0.1 
μM) of tamoxifen resulted in a slight proliferative effect whereas a high concentration (10 
μM) evoked increased cell death. An increase in ROS production was observed at both 
concentrations. In addition, tamoxifen has been shown to induce apoptosis in both ER-
positive and ER-negative breast cancer cell lines at a concentration of 5 μM (Mandlekar et 



59 
 

 

al., 2000). Mean intra-tumoral concentrations of tamoxifen in patients treated with 20 
mg/day for at least three months have been reported to be approximately 4 μM 
(MacCallum et al., 2000). The clinical benefit of adjuvant tamoxifen of 20 mg/day has been 
shown to be equivalent to higher doses (30-40 mg/day) (EBCTCG, 1998).  
 
 
6.3 DNA REPAIR MECHANISMS – XPD AND XRCC1 

6.3.1 XPD rs13181 as a predictive factor for the efficacy of adjuvant tamoxifen and 
chemotherapy 
XPD is involved in the transcription-coupled NER and identifies damaged DNA (Sung et 
al., 1993; Hoeijmakers et al., 1996; Mathieu et al., 2013). It was demonstrated that 
homozygosity for the XPD rs13181 wild type allele A associated with better RFS and BCSS 
in patients treated with tamoxifen. In addition, carrying the rs13181 wild type A allele 
predicted improved RFS in chemotherapy treated patients, suggesting that the 
homozygous rs13181 variant CC genotype results in a more efficient repair of DNA 
damage generated by cancer therapies. These findings are parallel with the results of two 
studies on metastatic breast cancer patients which both detected better survival for 
patients with the XPD rs13181 wild type A allele compared with those carrying the variant 
C allele in patients treated with chemotherapy (Chew et al., 2009; Bewick et al., 2011). On 
the other hand, the rs13181 genotype was not found to influence DFS or OS in breast 
cancer patients receiving adjuvant anthracycline-based adjuvant chemotherapy (Castro et 
al., 2014).  
    NER is the main repair pathway for removing the bulky DNA adducts formed by 
cisplatin and cyclophosphamide (Andersson et al., 1996; Altaha et al., 2004). In patients 
with metastatic pancreatic cancer treated with cisplatin-gemcitabine, the XPD rs13181 
variant CC genotype associated with worse PFS and OS. Furthermore, an in vitro analysis 
of lymphocytes from healthy volunteers revealed that the DNA repair was significantly 
more efficient in the rs13181 CC genotype after exposure to cisplatin or cisplatin-
gemcitabine (Avan et al., 2013). NER also participates in the repair of DNA damage 
induced by oxidative stress (Gopalakrishnan et al., 2010). 
    The DNA adducts formed by tamoxifen have been shown to act as substrates for the 
human NER pathway (McLuckie et al., 2005).  Tamoxifen is able to generate DNA adducts 
in human endometrium (Hernandez-Ramon et al., 2014). This may contribute to the risk of 
endometrial cancer associated with the use of tamoxifen. However, a comparison of breast 
tissue biopsies from a breast cancer patient who had taken tamoxifen for 24 months with 
another woman with no breast cancer did not detect any evidence of DNA adducts in 
either breast tissue samples (Beland et al., 2004). Even though the effects of tamoxifen are 
most likely tissue specific, no definitive conclusions can be drawn based on this study with 
only two individuals. 
    The influence of genetic polymorphisms of the XPD gene remains a subject of some 
controversy. In vitro assays conducted with various methods have generated conflicting 
results (Lunn et al., 2000; Spitz et al., 2001; Au et al., 2003; Laine et al., 2007; Wlodarczyk 
and Nowicka, 2012). It has also been predicted that the XPD rs13181 is located outside the 
catalytic sites and a regulatory domain (Bienstock et al., 2003; Dubaele et al., 2003). Thus, 
the rs13181 may not be detrimental for the helicase activity or stability of TFIIH complex 
required in the repair process. However, experimental in vitro assays do not necessarily 
represent the processes of repair in vivo, where multiple transcriptional factors and 
structural DNA modifications may alter the consequences.   
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6.3.2 Association of the XRCC1 rs25487 with the outcome of breast cancer 
XRCC1 protein does not possess any enzymatic activity on its own but is thought to act by 
recruiting and coordinating other DNA repair enzymes (Ginsberg et al., 2011). It is 
crucially involved in the processes of SSB repair and BER. XRCC1 is also involved with the 
NHEJ repair of DSBs as it reinforces the function of Lig3 but it is dispensable for this 
process (Soni et al., 2014).   
    It was found that homozygosity for the XRCC1 rs25487 variant A allele associated with 
worse BCSS and OS in patients treated with postoperative radiotherapy. Likewise, the 
rs25487 variant AA genotype was associated with worse BCSS in patients who received 
adjuvant chemotherapy as well as in the analyses conducted in the whole study 
population. However, this particular SNP did not emerge as a significant factor for 
outcome in patients who did not receive any adjuvant treatments.  
    The present findings are contradictory to the in vitro study reporting that the variant AA 
genotype would be associated with reduced capacity to repair DNA damage (Slyskova et 
al., 2007). In addition, an evaluation of isolated lymphocytes irradiated with γ-rays 
revealed that the irradiation-specific DNA repair rate defined as the number of SSBs was 
significantly lower in subjects carrying the rs25487 variant A genotype (Vodicka et al., 
2004). These findings have been further corroborated in an in vitro study exploring the 
effect of XRCC1 polymorphisms on the kinetics and dissociation after micro-irradiation 
(Hanssen-Bauer et al., 2012). That report suggested that the rs25487 variant has a reduced 
ability to remain at sites of damage.    
    It has been estimated that irradiation of cells with 1 Gy leads to 1,500-2,500 base 
damages, 1000 SSBs, and 40 DSBs per cell (Ward, 1986). Of these injuries, DSBs are most 
lethal to cells. In the case when the SSBs or damaged bases are located close to each other 
in the opposite DNA strands, the repair process may lead to a new DSB due to the 
cleavage of both backbones (Ward, 1988). It has been proposed that a deficiency in BER 
might actually result in increased cell survival after treatment with ionizing radiation due 
to the decreased production of DSBs (Sak et al., 2005). This might explain why the rs25487 
variant genotype was associated with inferior survival in the present study.    
    In vitro, cells expressing the rs25487 variant AA genotype were found to be more 
resistant to many chemotherapeutic agents including several alkylating regimens and 5-
fluorouracil (Yarosh et al., 2005). There have been different approaches applied to evaluate 
the influence of rs25487 on the outcome of various cancer treatments. For example, an 
extensive meta-analysis of esophageal and gastric cancer patients treated with 
neoadjuvant chemoradiotherapy found that the rs25487 wild type GG allele was 
associated with better pathologic complete response (Findlay et al., 2015). On the other 
hand, in a meta-analysis of advanced or metastatic gastric or colorectal cancer, the rs25487 
polymorphism did not have any predictive value for DFS or OS (Wu et al., 2014a).  
    Similarly, results from clinical studies in breast cancer patients are inconsistent. Three 
studies have reported an association between carriage of the rs25487 variant A allele and 
better EFS, BCSS or OS in early breast cancer patients receiving adjuvant treatment 
(chemotherapy and radiotherapy, or chemotherapy alone) (Jaremko et al., 2007; Ye et al., 
2012; Przybylowska-Sygut et al., 2013). It is worth noting that in the study of 
Przybylowska-Sygut et al., the OS was defined as the time between the surgery and the 
death caused by cancer, and they reported only univariate survival analyses. Furthermore, 
there was inconsistency in the numbers of patients reported and analyzed in the different 
treatment subgroups (Przybylowska-Sygut et al., 2013).  
    Two studies found no associations between polymorphism in rs25487 on the survival of 
breast cancer patients (Costa et al., 2008; Syamala et al., 2009). The study by Syamala et al. 
included also patients with stage IV disease. One study with stage IV breast cancer 
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patients treated with chemotherapy found a correlation between carrying the rs25487 
variant A allele and poor BCSS (Bewick et al., 2006), and another study similarly reported 
an association with the rs25487 A allele carriage and inferior DFS in early breast cancer 
patients receiving adjuvant chemotherapy (Castro et al., 2014).    
    Results from trials investigating the influence of the rs25487 on the XRCC1 gene or 
XRCC1 protein expression have been inconclusive. In an analysis of lymphocytes from 30 
healthy subjects, the XRCC1 gene expression was higher in those individuals carrying the 
variant A allele but there was no difference in the repair activity between the rs25487 
genotypes (Zipprich et al., 2010). Moreover, carriage of the rs25487 variant A allele 
associated with higher XRCC1 protein expression in patients with cervical carcinoma 
(Cheng et al., 2009). On the other hand, an evaluation of breast tissue samples from 39 
breast cancer patients did not reveal any relationship between the rs25487 polymorphism 
and XRCC1 protein expression (Rybarova et al., 2011). It has been suggested that the 
rs25487 might influence the DNA repair capacity by altering the conformation of other 
structures within the BRCT I domain (Monaco et al., 2007). 
    Two studies evaluating the XRCC1 protein expression in a total of 2,700 cases of early 
breast cancer indicated that negative or low XRCC1 expression was an independent 
predictive factor for worse outcome in terms of DFS and BCSS (Sultana et al., 2013; Abdel-
Fatah et al., 2014). In the study of Sultana et al., this effect was visible both in ER+ and 
triple-negative cases, whereas the study of Abdel-Fatah et al. included only ER+ patients. 
The absence of XRCC1 expression also associated with more aggressive biological 
subtypes and loss of other DNA repair factors including BRCA1. The authors suggested 
that the XRCC1 deficiency leads to a mutator phenotype i.e. enhancing mutation rates in 
other loci, and subsequently results in chemotherapeutic agent resistance. Data on the 
XRCC1 genotypes was not available in these studies. 
    One explanation for the discordant results might be allelic imbalance between the 
germline cells and the tumour. This question was addressed in a study on patients with 
esophageal adenocarcinoma treated with chemo-radiotherapy (Yoon et al., 2011); no 
significant allelic imbalance was detected at the XRCC1 rs25487 SNP. As far as is known, 
there are no published studies which have investigated the rate of allelic imbalance in 
breast cancer at this particular locus.  
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7 Conclusions 

Breast cancer is a complex disease that presents in several different molecular subtypes 
with their own distinct prognostic and predictive features. In addition, the inherited 
genetic capacity to respond to oxidative stress, to metabolize drugs, and repair DNA 
damage can modify the outcome of adjuvant treatments in each individual breast cancer 
patient. This thesis examined the prognostic and predictive significance of the genetic 
polymorphisms in SULT1A1 gene which is involved in phase II drug metabolism, the 
antioxidant response genes NRF2, SRXN1, and MnSOD, and the DNA repair genes XPD 
and XRCC1.      

The following conclusions can be drawn from the individual studies (I-IV) of this thesis: 

I     The homozygous SULT1A1 rs9282861 variant genotype emerged as a predictive factor 
in a group of breast cancer patients treated with either adjuvant tamoxifen or 
chemotherapy, associating with improved OS. In addition, the rs9282861 variant genotype 
was observed to be a negative prognostic factor for RFS and OS in patients who did not 
receive any kind of adjuvant treatment.  

II    The nuclear and cytoplasmic expression of NRF2 associated with the SRXN1 protein 
expression. The rare homozygous genotypes of NRF2 rs6721961 and rs2706110 and the 
homozygous SRXN1 rs6053666 wild type genotype were related to an elevated risk of 
breast cancer. The NRF2 rs2886162 variant genotype was predictive of worse RFS and 
BCSS in patients who received adjuvant chemotherapy and of worse RFS in patients 
treated with postoperative radiotherapy. In the SRXN1 analyses, carriage of the rs6116929 
wild type allele, rs72699823 variant allele, or rs6085283 variant allele associated with better 
RFS and BCSS. The SRXN1 rs6053666 variant genotype predicted inferior RFS in patients 
receiving postoperative radiotherapy. The SRXN1 rs2008022 variant allele was prognostic 
for better BCSS.                                                                                                                                              

III    Carrying the MnSOD rs4880 wild type allele or XPD rs13181 wild type genotype was 
related to better RFS and BCSS in tamoxifen treated patients. Carriage of the XPD 
rs13181wild type allele also associated with better RFS in patients treated with adjuvant 
chemotherapy. In addition, in the combined analysis of the MnSOD rs4880 and XPD 
rs13181 genotypes, the increasing number of low-risk genotypes (rs4880 AA, rs4880 AG, or 
rs13181 AA) predicted superior RFS, BCSS, and OS in tamoxifen treated patients.    

IV    The homozygous XRCC1 rs25487 variant genotype predicted worse BCSS and OS in 
breast cancer patients treated with postoperative radiotherapy, and associated with 
inferior BCSS in patients receiving adjuvant chemotherapy.  

It should be noted that the allele frequencies and linkage disequilibrium patterns may 
vary considerably between different ethnic populations. In addition, environmental, 
cultural and dietary factors may cause variability in the gene-gene and gene-environment 
interactions. Furthermore, also chance may play a role especially in studies with small 
sample sizes. While the influence of a single polymorphism may be subtle, a combination 



64 
 

 

of high- or low-risk genotypes may result in a more significant effect on the disease risk or 
treatment efficacy.   
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