63 research outputs found

    Establishment of cell-based transposon-mediated transgenesis in cattle

    Get PDF
    Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transpositionis a feasible approach for genetic engineering in the cattle genome.Fil: Alessio, Ana Paula. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Departamento de BiologĂ­a Molecular; ArgentinaFil: Fili, Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Departamento de BiologĂ­a Molecular; ArgentinaFil: Garrels, Wiebke. Institut fĂŒr Nutztiergenetik; Alemania. Gottfried Wilhelm Leibniz UniversitĂ€t Hannover; AlemaniaFil: Forcato, Diego Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Departamento de BiologĂ­a Molecular; ArgentinaFil: Olmos Nicotra, Maria Florencia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Departamento de BiologĂ­a Molecular; ArgentinaFil: Liaudat, Ana Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Departamento de BiologĂ­a Molecular; ArgentinaFil: Bevacqua, Romina Jimena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂ­a. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂ­a Animal; ArgentinaFil: Savy, Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂ­a. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂ­a Animal; ArgentinaFil: Hiriart, MarĂ­a InĂ©s. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂ­a. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂ­a Animal; ArgentinaFil: Talluri, Thirumala R.. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Owens, Jesse B.. University of Hawaii at Manoa; Estados UnidosFil: Ivics, ZoltĂĄn. Paul-Ehrlich-Institute; AlemaniaFil: Salamone, Daniel Felipe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂ­a. PabellĂłn de Zootecnica. Laboratorio de BiotecnologĂ­a Animal; ArgentinaFil: Moisyadi, Stefan. University of Hawaii at Manoa; Estados UnidosFil: Kues, Wilfried A.. Institut fĂŒr Nutztiergenetik; AlemaniaFil: Bosch, Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario; Argentina. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Departamento de BiologĂ­a Molecular; Argentin

    Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant

    Get PDF
    Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy-resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, including four from chemoresistant metastatic lesions, were used for in vitro studies and to generate CR-CSC-based mouse avatars to evaluate tumor growth and progression upon treatment with BMP7v alone or in combination with standard therapy or PI3K inhibitors. BMP7v treatment promotes CR-CSC differentiation and recapitulates the cell differentiation-related gene expression profile by suppressing Wnt pathway activity and reducing mesenchymal traits and survival of CR-CSCs. Moreover, in CR-CSC-based mouse avatars, BMP7v exerts an antiangiogenic effect and sensitizes tumor cells to standard chemotherapy regardless of the mutational, MSI, and CMS profiles. Of note, tumor harboring PIK3CA mutations were affected to a lower extent by the combination of BMP7v and chemotherapy. However, the addition of a PI3K inhibitor to the BMP7v-based combination potentiates PIK3CA-mutant tumor drug response and reduces the metastatic lesion size. These data suggest that BMP7v treatment may represent a useful antiangiogenic and prodifferentiation agent, which renders CSCs sensitive to both standard and targeted therapies

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    CXCR6, a Newly Defined Biomarker of Tissue-Specific Stem Cell Asymmetric Self-Renewal, Identifies More Aggressive Human Melanoma Cancer Stem Cells

    Get PDF
    Background: A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. Conclusions/Significance: The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment

    Endothelin-1 Inhibits Prolyl Hydroxylase Domain 2 to Activate Hypoxia-Inducible Factor-1α in Melanoma Cells

    Get PDF
    The endothelin B receptor (ET(B)R) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1alpha is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ET(B)R, enhance the expression and activity of HIF-1alpha and HIF-2alpha that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-alpha stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1alpha oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ET(B)R markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ET(B)R-mediated PHD2 inhibition, HIF-1alpha, HIF-2alpha, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1alpha, ET(B)R expression is associated with low PHD2 levels. In melanoma xenografts, ET(B)R blockade by ET(B)R antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1alpha, and HIF-2alpha expression, and an increase in PHD2 levels.In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1alpha stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ET(B)R may represent a potential therapeutic treatment of melanoma by impairing HIF-1alpha stability

    Cell-to-Cell Signaling Influences the Fate of Prostate Cancer Stem Cells and Their Potential to Generate More Aggressive Tumors

    Get PDF
    An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44+CD24− phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and ÎČ-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications

    Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is characterized by severe motor symptoms, and currently there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD; however, its effect in PD motor symptoms has never been addressed. In the present work, an extensive behavior analysis was performed to better characterize the MPTP model of PD and to evaluate the effects of TUDCA in the prevention/improvement of mice phenotype. MPTP induced significant alterations in general motor performance paradigms, including increased latency in the motor swimming, adhesive removal and pole tests, as well as altered gait, foot dragging, and tremors. TUDCA administration, either before or after MPTP, significantly reduced the swimming latency, improved gait quality, and decreased foot dragging. Importantly, TUDCA was also effective in the prevention of typical parkinsonian symptoms such as spontaneous activity, ability to initiate movement and tremors. Accordingly, TUDCA prevented MPTP-induced decrease of dopaminergic fibers and ATP levels, mitochondrial dysfunction and neuroinflammation. Overall, MPTP-injected mice presented motor symptoms that are aggravated throughout time, resembling human parkinsonism, whereas PD motor symptoms were absent or mild in TUDCA-treated animals, and no aggravation was observed in any parameter. The thorough demonstration of improvement of PD symptoms together with the demonstration of the pathways triggered by TUDCA supports a subsequent clinical trial in humans and future validation of the application of this bile acid in PD.National funds, through the Foundation for Science and Technology (Portugal) (FCT), under the scope of the projects PTDC/NEU-NMC/0248/2012, UID/DTP/04138/2013 and POCI-01-0145-FEDER-007038, and post-doctoral grants SFRH/BPD72891/2010 (to A.I.R.), SFRH/BPD/95855/2013 (to M.J.N.), SFRH/BPD/98023/2013 (to A.N.C.), SFRH/BPD/91562/2012 (to A.S.F.) and UMINHO/BI/248/2016 (to S.D.S.). This work has also been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and by FEDER funds, through the Competitiveness Factors Operational Program (COMPETE)info:eu-repo/semantics/publishedVersio

    Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes

    Get PDF
    BACKGROUND: Toll-like receptor (TLR) activation on microglia and astrocytes are key elements in neuroinflammation which accompanies a number of neurological disorders. While TLR activation on glia is well-established to up-regulate pro-inflammatory mediator expression, much less is known about how ligand engagement of one TLR may affect expression of other TLRs on microglia and astrocytes. METHODS: In the present study, we evaluated the effects of agonists for TLR2 (zymosan), TLR3 (polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analogue of double-stranded RNA) and TLR4 (lipopolysaccaride (LPS)) in influencing expression of their cognate receptor as well as that of the other TLRs in cultures of rat cortical purified microglia (>99.5 %) and nominally microglia-free astrocytes. Elimination of residual microglia (a common contaminant of astrocyte cultures) was achieved by incubation with the lysosomotropic agent L-leucyl-L-leucine methyl ester (L-LME). RESULTS: Flow cytometric analysis confirmed the purity (essentially 100 %) of the obtained microglia, and up to 5 % microglia contamination of astrocytes. L-LME treatment effectively removed microglia from the latter (real-time polymerase chain reaction). The three TLR ligands robustly up-regulated gene expression for pro-inflammatory markers (interleukin-1 and interleukin-6, tumor necrosis factor) in microglia and enriched, but not purified, astrocytes, confirming cellular functionality. LPS, zymosan and poly(I:C) all down-regulated TLR4 messenger RNA (mRNA) and up-regulated TLR2 mRNA at 6 and 24 h. In spite of their inability to elaborate pro-inflammatory mediator output, the nominally microglia-free astrocytes (>99 % purity) also showed similar behaviours to those of microglia, as well as changes in TLR3 gene expression. LPS interaction with TLR4 activates downstream mitogen-activated protein kinase and nuclear factor-ÎșB signalling pathways and subsequently causes inflammatory mediator production. The effects of LPS on TLR2 mRNA in both cell populations were antagonized by a nuclear factor-ÎșB inhibitor. CONCLUSIONS: TLR2 and TLR4 activation in particular, in concert with microglia and astrocytes, comprise key elements in the initiation and maintenance of neuropathic pain. The finding that both homologous (zymosan) and heterologous (LPS, poly(I:C)) TLR ligands are capable of regulating TLR2 gene expression, in particular, may have important implications in understanding the relative contributions of different TLRs in neurological disorders associated with neuroinflammation

    Momentum scale calibration of the LHCb spectrometer

    Get PDF
    For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/ψ → ÎŒ + ÎŒ - and B+ → J/ψ K + decays and leads to a relative accuracy of 3 × 10-4 on the momentum scale
    • 

    corecore