123 research outputs found

    Cortical Gyrification and Sulcal Spans in Early Stage Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by an insidious onset of progressive cerebral atrophy and cognitive decline. Previous research suggests that cortical folding and sulcal width are associated with cognitive function in elderly individuals, and the aim of the present study was to investigate these morphological measures in patients with AD. The sample contained 161 participants, comprising 80 normal controls, 57 patients with very mild AD, and 24 patients with mild AD. From 3D T1-weighted brain scans, automated methods were used to calculate an index of global cortex gyrification and the width of five individual sulci: superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. We found that global cortex gyrification decreased with increasing severity of AD, and that the width of all individual sulci investigated other than the intra-parietal sulcus was greater in patients with mild AD than in controls. We also found that cognitive functioning, as assessed by Mini-Mental State Examination (MMSE) scores, decreased as global cortex gyrification decreased. MMSE scores also decreased in association with a widening of all individual sulci investigated other than the intra-parietal sulcus. The results suggest that abnormalities of global cortex gyrification and regional sulcal span are characteristic of patients with even very mild AD, and could thus facilitate the early diagnosis of this condition

    Multitrait analysis of quantitative trait loci using Bayesian composite space approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multitrait analysis of quantitative trait loci can capture the maximum information of experiment. The maximum-likelihood approach and the least-square approach have been developed to jointly analyze multiple traits, but it is difficult for them to include multiple QTL simultaneously into one model.</p> <p>Results</p> <p>In this article, we have successfully extended Bayesian composite space approach, which is an efficient model selection method that can easily handle multiple QTL, to multitrait mapping of QTL. There are many statistical innovations of the proposed method compared with Bayesian single trait analysis. The first is that the parameters for all traits are updated jointly by vector or matrix; secondly, for QTL in the same interval that control different traits, the correlation between QTL genotypes is taken into account; thirdly, the information about the relationship of residual error between the traits is also made good use of. The superiority of the new method over separate analysis was demonstrated by both simulated and real data. The computing program was written in FORTRAN and it can be available for request.</p> <p>Conclusion</p> <p>The results suggest that the developed new method is more powerful than separate analysis.</p

    Squaring the circle: a priority-setting method for evidence-based service development, reconciling research with multiple stakeholder views.

    Get PDF
    BACKGROUND: This study demonstrates a technique to aid the implementation of research findings through an example of improving services and self-management in longer-term depression. In common with other long-term conditions, policy in this field requires innovation to be undertaken in the context of a whole system of care, be cost-effective, evidence-based and to comply with national clinical guidelines. At the same time, successful service development must be acceptable to clinicians and service users and choices must be made within limited resources. This paper describes a novel way of resolving these competing requirements by reconciling different sources and types of evidence and systematically engaging multiple stakeholder views. METHODS: The study combined results from mathematical modelling of the care pathway, research evidence on effective interventions and findings from qualitative research with service users in a series of workshops to define, refine and select candidate service improvements. A final consensus-generating workshop used structured discussion and anonymised electronic voting. This was followed by an email survey to all stakeholders, to achieve a pre-defined criterion of consensus for six suggestions for implementation. RESULTS: An initial list of over 20 ideas was grouped into four main areas. At the final workshop, each idea was presented in person, visually and in writing to 40 people, who assigned themselves to one or more of five stakeholder groups: i) service users and carers, ii) clinicians, iii) managers, iv) commissioners and v) researchers. Many belonged to more than one group. After two rounds of voting, consensus was reached on seven ideas and one runner up. The survey then confirmed the top six ideas to be tested in practice. CONCLUSIONS: The method recruited and retained people with diverse experience and views within a health community and took account of a full range of evidence. It enabled a diverse group of stakeholders to travel together in a direction that converged with the messages coming out of the research and successfully yielded priorities for service improvement that met competing requirements

    Lateral Orbitofrontal Cortex Involvement in Initial Negative Aesthetic Impression Formation

    Get PDF
    It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Landmarking the brain for geometric morphometric analysis: An error study

    Get PDF
    Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype. To date, approximately fifty landmarks have been used to study brain shape. Of the studies that have used landmark-based statistical shape analysis of the brain, most have not published protocols for landmark identification or the results of reliability studies on these landmarks. The primary aims of this study were two-fold: (1) to collaboratively develop detailed data collection protocols for a set of brain landmarks, and (2) to complete an intra- and inter-observer validation study of the set of landmarks. Detailed protocols were developed for 29 cortical and subcortical landmarks using a sample of 10 boys aged 12 years old. Average intra-observer error for the final set of landmarks was 1.9 mm with a range of 0.72 mm-5.6 mm. Average inter-observer error was 1.1 mm with a range of 0.40 mm-3.4 mm. This study successfully establishes landmark protocols with a minimal level of error that can be used by other researchers in the assessment of neuroanatomic phenotypes. © 2014 Chollet et al

    Fast reproducible identification and large-scale databasing of individual functional cognitive networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cognitive processes such as reading and calculation are associated with reproducible cerebral networks, inter-individual variability is considerable. Understanding the origins of this variability will require the elaboration of large multimodal databases compiling behavioral, anatomical, genetic and functional neuroimaging data over hundreds of subjects. With this goal in mind, we designed a simple and fast acquisition procedure based on a 5-minute functional magnetic resonance imaging (fMRI) sequence that can be run as easily and as systematically as an anatomical scan, and is therefore used in every subject undergoing fMRI in our laboratory. This protocol captures the cerebral bases of auditory and visual perception, motor actions, reading, language comprehension and mental calculation at an individual level.</p> <p>Results</p> <p>81 subjects were successfully scanned. Before describing inter-individual variability, we demonstrated in the present study the reliability of individual functional data obtained with this short protocol. Considering the anatomical variability, we then needed to correctly describe individual functional networks in a voxel-free space. We applied then non-voxel based methods that automatically extract main features of individual patterns of activation: group analyses performed on these individual data not only converge to those reported with a more conventional voxel-based random effect analysis, but also keep information concerning variance in location and degrees of activation across subjects.</p> <p>Conclusion</p> <p>This collection of individual fMRI data will help to describe the cerebral inter-subject variability of the correlates of some language, calculation and sensorimotor tasks. In association with demographic, anatomical, behavioral and genetic data, this protocol will serve as the cornerstone to establish a hybrid database of hundreds of subjects suitable to study the range and causes of variation in the cerebral bases of numerous mental processes.</p

    Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures.</p> <p>Methods</p> <p>Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures.</p> <p>Results</p> <p>The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes.</p> <p>Conclusions</p> <p>MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.</p

    Non-invasive imaging in the diagnosis of acute viral myocarditis

    Get PDF
    Autopsy series of consecutive cases have demonstrated an incidence of myocarditis at approximately 1–10%; on the contrary, myocarditis is seriously underdiagnosed clinically. In a traditional view, the gold standard has been myocardial biopsy. However, it is generally specific but invasive and less sensitive, mostly because of the focal nature of the disease. Thus, non-invasive approaches to detect myocarditis are necessary. The traditional diagnostic tools are electrocardiography, laboratory values, especially troponin T or I, creatine kinase and echocardiography. For a long period, nuclear technique with indium-111 antimyosin antibody has been used as a diagnostic approach. In the last years, the use of this technique has declined because of radiation exposure and 48-h delay in obtaining imaging after injection to prevent blood pool effect. Thus, a non-invasive diagnostic approach without radiation and online image availability has been awaited. Cardiac magnetic resonance imaging has these promising characteristics. With this technique, it is possible to analyse inflammation, oedema and necrosis in addition to functional parameters such as left ventricular function, regional wall motion and dimensions. Thus, cardiovascular magnetic resonance imaging has emerged as the most important imaging tool in the diagnostic procedure and the review focus on this field. But there are also advances in echocardiography and computer tomography, which are described in detail
    corecore