154 research outputs found
Collagen proportionate area is an independent predictor of long-term outcome in patients with non-alcoholic fatty liver disease
Background: Collagen proportionate area (CPA) measurement is a technique that quantifies fibrous tissue in liver biopsies by measuring the amount of collagen deposition as a proportion of the total biopsy area. CPA predicts clinical outcomes in patients with HCV and can sub-classify cirrhosis. Aim: To test the ability of CPA to quantify fibrosis and predict clinical outcomes in patients with NAFLD. Methods: We assessed consecutive patients with biopsy-proven NAFLD from three European centres. Clinical and laboratory data were collected at baseline and at the time of the last clinical follow-up or death. CPA was performed at two different objective magnifications, whole biopsy macro and
74 objective magnification, named standard (SM) and high (HM) magnification respectively. The correlation between CPA and liver stiffness was assessed in a sub-group of patients. Results: Of 437 patients, 32 (7.3%) decompensated and/or died from liver-related causes during a median follow-up of 103 months. CPA correlated with liver stiffness and liver fibrosis stage across the whole spectrum of fibrosis. HM CPA was significantly higher than SM CPA in stages F0-F3 but similar in cirrhosis, reflecting a higher ability to capture pericellular/perisinusoidal fibrosis at early stages. Age at baseline (HR: 1.04, 95% CI: 1.01-1.08), HM CPA (HR: 1.04 per 1% increase, 95% CI: 1.01-1.08) and presence of advanced fibrosis (HR: 15.4, 95% CI: 5.02-47.84) were independent predictors of liver-related clinical outcomes at standard and competing risk multivariate Cox-regression analysis. Conclusions: CPA accurately measures fibrosis and is an independent predictor of clinical outcomes in NAFLD; hence it merits further evaluation as a surrogate endpoint in clinical trials
A Nonperturbative Study of Inverse Symmetry Breaking at High Temperatures
The optimized linear -expansion is applied to multi-field scalar theories at high temperatures. Using the imaginary time
formalism the thermal masses are evaluated perturbatively up to order
which considers consistently all two-loop contributions. A
variational procedure associated with the method generates nonperturbative
results which are used to search for parameters values for inverse symmetry
breaking (or symmetry nonrestoration) at high temperatures. Our results are
compared with the ones obtained by the one-loop perturbative approximation, the
gap equation solutions and the renormalization group approach, showing good
agreement with the latter method. Apart from strongly supporting inverse
symmetry breaking (or symmetry nonrestoration), our results reveal the
possibility of other high temperature symmetry breaking patterns for which the
last term in the breaking sequence is .Comment: 28 pages,5 eps figures (uses epsf), RevTeX. Only a small misprint in
Eq. (2.10) and a couple of typos fixe
Comparison of Serum HBsAg Quantitation by Four Immunoassays, and Relationships of HBsAg Level with HBV Replication and HBV Genotypes
BACKGROUND: The decline in hepatitis B virus surface antigen (HBsAg) may be an early predictor of the viral efficacy of Hepatitis B virus (HBV) therapy. The HBsAg levels obtained by different immunoassays now need comparing and the relationships between levels of HBsAg and HBV DNA alongside HBsAg and genotype must be evaluated. METHODOLOGY/PRINCIPAL FINDINGS: HBsAg levels were compared among 80 patients using the Abbott Architect assay, a commercial immunoassay approved for HBsAg detection and quantitation, and three other assays derived from immunoassays approved for HBsAg detection (manufactured by Diasorin, Bio-Rad and Roche). Good correlation was found between the Abbot vs. Diasorin, Bio-Rad and Roche assays with narrow 95% limits of agreement and small mean differences: -0.06 to 0.11, -0.09 log(10) IU/mL; -0.57 to 0.64, -0.04 log(10) IU/mL; -0.09 to 0.45, -0.27 log(10) IU/mL, respectively. These agreements were not affected by genotypes A or D. HBsAg was weakly correlated with HBV DNA, whatever the HBsAg assay used: Abbott, Ï = 0.36 p = 0.001, Diasorin Ï = 0.34, p = 0.002; Bio-Rad Ï = 0.37, p<0.001; or Roche Ï = 0.41, p<0.001. This relationship between levels of HBsAg and HBV DNA seemed to depend on genotypes. Whereas HBsAg (Abbott assay) tended to correlate with HBV DNA for genotype A (Ï = 0.44, p = 0.02), no such correlation was significant for genotypes D (Ï = 0.29, p = 0.15). CONCLUSION/SIGNIFICANCE: The quantitation of HBsAg in routine clinical samples is comparable between the reference assay and the adapted assays with acceptable accuracy limits, low levels of variability and minimum discrepancy. While HBsAg quantitation is not affected by HBV genotype, the observed association between levels of HBsAg and HBV DNA seems genotype dependent
Efficacy of the combination of long-acting release octreotide and tamoxifen in patients with advanced hepatocellular carcinoma: a randomised multicentre phase III study
To assess the efficacy of the combination of long-acting release (LAR) octreotide and tamoxifen (TMX) for the treatment of advanced hepatocellular carcinoma (HCC). A total of 109 patients with advanced HCC were randomised to receive octreotide LAR combined with TMX (n=56) (experimental treatment group) or TMX alone (n=53; control group). The clinical, biological and tumoural parameters were recorded every 3 months until death. Primary end point was patient survival; secondary end points were the impact of therapy on tumour response, quality of life and variceal bleeding episodes. Univariate and multivariate analyses were performed for assessment of specific prognostic factors. The median survival was 3 months (95% CI 1.4â4.6) for the experimental treatment group and 6 months (CI 95% 2â10) for the control group (P=0.609). There was no difference in terms of α-foetoprotein (α-FP) decrease, tumour regression, improvement of quality of life and prevention of variceal bleeding between the two groups. Variables associated with a better survival in the multivariate analysis were: presence of cirrhosis, α-FP level <400ângâmlâ1 and Okuda stage I. The combination of octreotide LAR and TMX does not influence survival, tumour progression or quality of life in patients with advanced HCC
Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort
Background: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. Methods: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. Results: SVR24 rates were 46.1 % (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1,2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. Conclusions: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginter-feron alfa-2a/ribavirin
Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort.
BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced â„1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with â„1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not â„5. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin.This study was sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing
assistance for this manuscript, furnished by Blair Jarvis MSc, ELS, of Health Interactions, was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland
The impact of viral mutations on recognition by SARS-CoV-2 specific TÂ cells.
We identify amino acid variants within dominant SARS-CoV-2 TÂ cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific TÂ cells assessed by IFN-Îł and cytotoxic killing assays. Complete loss of TÂ cell responsiveness was seen due to Q213K in the Aâ01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the Bâ27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the Aâ03:01/Aâ11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ TÂ cell lines unable to recognize variant epitopes have diverse TÂ cell receptor repertoires. These data demonstrate the potential for TÂ cell evasion and highlight the need for ongoing surveillance for variants capable of escaping TÂ cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC â IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
Recurrent SARS-CoV-2 mutations in immunodeficient patients
Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cellâcell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted. © The Author(s) 2022. Published by Oxford University Press
Genomic reconstruction of the SARS-CoV-2 epidemic in England.
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
- âŠ