19 research outputs found

    Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart

    Get PDF
    AbstractThe aim of this work was to characterize the effect of bongkrekic acid (BKA), atractyloside (ATR) and carboxyatractyloside (CAT) on single channel properties of chloride channels from mitochondria. Mitochondrial membranes isolated from a rat heart muscle were incorporated into a bilayer lipid membrane (BLM) and single chloride channel currents were measured in 250/50 mM KCl cis/trans solutions. BKA (1–100 μM), ATR and CAT (5–100 μM) inhibited the chloride channels in dose-dependent manner. The inhibitory effect of the BKA, ATR and CAT was pronounced from the trans side of a BLM and it increased with time and at negative voltages (trans–cis). These compounds did not influence the single channel amplitude, but decreased open dwell time of channels. The inhibitory effect of BKA, ATR and CAT on the mitochondrial chloride channel may help to explain some of their cellular and/or subcellular effects

    Effects of AP39, a novel triphenylphosphonium derivatised anethole dithiolethione hydrogen sulfide donor, on rat haemodynamic parameters and chloride and calcium Cav3 and RyR2 channels.

    No full text
    Copyright © 2014 Elsevier Inc. All rights reserved.H2S donor molecules have the potential to be viable therapeutic agents. The aim of this current study was (i) to investigate the effects of a novel triphenylphosphonium derivatised dithiolethione (AP39), in the presence and absence of reduced nitric oxide bioavailability and (ii) to determine the effects of AP39 on myocardial membrane channels; CaV3, RyR2 and Cl(-). Normotensive, L-NAME- or phenylephrine-treated rats were administered Na2S, AP39 or control compounds (AP219 and ADT-OH) (0.25-1 µmol kg(-1)i.v.) and haemodynamic parameters measured. The involvement of membrane channels T-type Ca(2+) channels CaV3.1, CaV3.2 and CaV3.3 as well as Ca(2+) ryanodine (RyR2) and Cl(-) single channels derived from rat heart sarcoplasmic reticulum were also investigated. In anaesthetised Wistar rats, AP39 (0.25-1 µmol kg(-1) i.v) transiently decreased blood pressure, heart rate and pulse wave velocity, whereas AP219 and ADT-OH and Na2S had no significant effect. In L-NAME treated rats, AP39 significantly lowered systolic blood pressure for a prolonged period, decreased heart rate and arterial stiffness. In electrophysiological studies, AP39 significantly inhibited Ca(2+) current through all three CaV3 channels. AP39 decreased RyR2 channels activity and increased conductance and mean open time of Cl(-) channels. This study suggests that AP39 may offer a novel therapeutic opportunity in conditions whereby (•)NO and H2S bioavailability are deficient such as hypertension, and that CaV3, RyR2 and Cl(-) cardiac membrane channels might be involved in its biological actions.Slovak Research and Development AgencyBMBS COST Actio
    corecore