310 research outputs found
Nonlinear Differential Equations Satisfied by Certain Classical Modular Forms
A unified treatment is given of low-weight modular forms on \Gamma_0(N),
N=2,3,4, that have Eisenstein series representations. For each N, certain
weight-1 forms are shown to satisfy a coupled system of nonlinear differential
equations, which yields a single nonlinear third-order equation, called a
generalized Chazy equation. As byproducts, a table of divisor function and
theta identities is generated by means of q-expansions, and a transformation
law under \Gamma_0(4) for the second complete elliptic integral is derived.
More generally, it is shown how Picard-Fuchs equations of triangle subgroups of
PSL(2,R) which are hypergeometric equations, yield systems of nonlinear
equations for weight-1 forms, and generalized Chazy equations. Each triangle
group commensurable with \Gamma(1) is treated.Comment: 40 pages, final version, accepted by Manuscripta Mathematic
Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet
We discuss optical forces exerted on particles, either dielectric or
metallic, near a subwavelength slit illuminated by a photonic nanojet. We
compare those cases in which the Mie resonances are or are not excited. The
configurations on study are 2D, hence those particles are infinite cylinders
and, in order to obtain extraordinary transmission, the illuminating beam is
p-polarized. We show the different effects of these particle resonances on the
optical forces: while whispering gallery modes under those illumination
conditions weaken the force strength, this latter is enhanced by localized
plasmon excitation. Also, illuminating the slit with a nanojet enhances the
optical forces on the particle at the exit of the aperture by a factor between
3 and 10 compared with illumination of the slit with a Gausian beam. In
addition, the pulling force that such a small resonant metallic particle
suffers on direct illumination by a nanojet, can change by the presence of the
slit, so that it may become repulsive at certain lateral positions of the
particle
Analytical solutions to zeroth-order dispersion relations of a cylindrical metallic nanowire
Zeroth-order complex dispersion relations of a cylindrical metallic nanowire
have been solved out analytically with approximate methods. The analytical
solutions are valid for the sections of the dispersion relations whose
frequencies are close to the Surface Plasmon frequency. The back bending of the
Surface Plasmon-Polaritons(SPPs) can be well described by the analytical
solutions, confirming that the back bending is originated from the metal Ohmic
loss. The utility of the back bending point in the dispersion relation for the
measurement of the metallic Ohimc loss has also been suggested.Comment: 6pages, 3figure
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Zn-Neighbor Cu NQR in Zn-Substituted YBa2Cu3O7-d and YBa2Cu4O8
We studied local electronic states near Zn in optimally doped
YBa(CuZn_x)O and underdoped
YBa(CuZn_x)O via satellite signals of plane-site Cu(2)
nuclear quadrupole resonance (NQR) spectra. From the relative intensity of Cu
NQR spectra, the satellite signals are assigned to Zn-neighbor Cu NQR lines.
The Cu nuclear spin-lattice relaxation time of the satellite signal is shorter
than that of the main signal, which indicates that the magnetic correlation is
locally enhanced near Zn both for the underdoped and the optimally doped
systems. The pure YBaCuO is a stoichiometric, homogenous,
underdoped electronic system; nevertheless, the Zn-induced inhomogeneous
magnetic response in the CuO plane is more marked than that of the
optimally doped YBaCuO.Comment: 9 pages including 8 figures, to be published in Phys. Rev.
Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions
Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper
Psychology and aggression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
- …