173 research outputs found

    Improving Emergency Response Using Wearable Wireless Sensor Networks and Structural Health Monitoring Systems

    Get PDF
    Structural collapse and damage which have been occurred during past decades have caused severe failures especially in strategic infrastructures and public buildings. A natural disaster may cause a large number of injuries and deaths expecially in public building which are usually crowded, therefore in order to improve their resilience it is necessary to decrease their probability of failure and improve their emergency response in rescuing the people inside. Since timing is important during an emergency, if the rescue teams search for victims faster, the nummber of survivors can increase. This paper presents a novel practical method to improve the emergency response of rescuers after a disaster using a structural health monitoring system (SHM) and a Wearable Sensor Networks (WSN). The proposed system includes fixed SHM nodes which measure structural related parameters like vibration, humidity, etc. It also includes mobile nodes which are wearable wristbands worn by people to collect data including approximate location of victims and health status. This system provides the rescue teams with data related to the damaged parts of the buildings, number of people who have been trapped inside the building, their location by means of indoor localization, and their vital status. These data which are collected and analyzed in real-time, are being used for building damage level assessment, but also to help rescuers to locate victims faster and save more lives. The fixed and mobile nodes construct a wireless sensor network which stays functional even during power outage by means of rechargeable batteries. Through this system, it is possible to assess the structural health of the building and also improve the emergency response of rescuers by optimizing their time when a disaster occurs

    Biliverdin Reductase: More than a Namesake – The Reductase, Its Peptide Fragments, and Biliverdin Regulate Activity of the Three Classes of Protein Kinase C

    Get PDF
    The expanse of human biliverdin reductase (hBVR) functions in the cells is arguably unmatched by any single protein. hBVR is a Ser/Thr/Tyr-kinase, a scaffold protein, a transcription factor, and an intracellular transporter of gene regulators. hBVR is an upstream activator of the insulin/IGF-1 signaling pathway and of protein kinase C (PKC) kinases in the two major arms of the pathway. In addition, it is the sole means for generating the antioxidant bilirubin-IXα. hBVR is essential for activation of ERK1/2 kinases by upstream MAPKK-MEK and by PKCδ, as well as the nuclear import and export of ERK1/2. Small fragments of hBVR are potent activators and inhibitors of the ERK kinases and PKCs: as such, they suggest the potential application of BVR-based technology in therapeutic settings. Presently, we have reviewed the function of hBVR in cell signaling with an emphasis on regulation of PKCδ activity

    Inhibition of foxo and minibrain in Dopaminergic Neurons Can Model Aspects of Parkinson Disease in Drosophila melanogaster

    Get PDF
    Abstract Symptoms of Parkinson Disease (PD), the second most common neurodegenerative disease, emerge due to degeneration of dopaminergic neurons. Recently, a genome wide study revealed a role for a foxo transcription factor in PD. In the model organism Drosophila melanogaster, we have attempted 1) to inhibit the sole Drosophila homologue of foxo through the directed expression of a stable inducible RNAi transgene and 2) to indirectly increase foxo transcription activity through the inhibition of the kinase minibrain (mnb), a foxo transcriptional inhibitor. To evaluate the lifetime consequences upon the flies, longevity assays and locomotion over time assays were conducted. The inhibition of foxo by foxo-RNAi decreases life span significantly when expressed under the control of Tyrosine Hydroxylase-Gal4 (TH-Gal4). The targeted expression of mnb-RNAi, in the dopaminergic neurons, with an expected loss of suppression of foxo transcriptional activity, results in a significant loss of climbing ability. Thus alteration of foxo activity, both by RNA-inhibition and by down-regulation of an inhibitor of foxo, minibrain, produces novel Drosophila models of Parkinson Disease. Keywords Drosophila melanogaster, Model of Parkinson Disease, foxo, minibrai

    Autoroute A16 (Pas-de-Calais)

    Get PDF
    Date de l'opération : 1991 (PR) Inventeur(s) : Dien E. ; Mahin E. ; Martial Emmanuelle ; Cabuy Yves ; Ducrocq Thierry L’autoroute A 16, reliant Paris à Boulogne-sur-Mer, via Amiens, incise le département du Pas-de-Calais sur environ 46 km de long, selon un axe nord-sud entre Boulogne et l’Authie. À l’instar des grands travaux, les interventions archéologiques furent planifiées par une convention avec l’aménageur (SANEF). Pour la section Amiens-Boulogne, les modalités d’exécution des prospecti..

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Spatio-temporal patterns of pre-eclampsia and eclampsia in relation to drinking water salinity at the district level in Bangladesh from 2016 to 2018

    Get PDF
    This analysis examines whether salinity in drinking water is associated with pre-eclampsia and eclampsia (PE/E), a leading cause of maternal morbidity and mortality. Bangladesh’s national health information system data were extracted at the district level (n = 64) to assess PE/E rates, and these were overlaid with three environmental measures approximating drinking water salinity, remotely sensed low-elevation coastal zone (LECZ), monthly rainfall data, and electrical conductivity of groundwater (i.e., water salinity). Results from a negative binomial fixed effects model suggest PE/E rates are higher with less rainfall (dry season), lower population density, and that district level rates of PE/E increase with higher groundwater salinity and in the high risk LECZ category closest to the coast. Results suggest that drinking water salinity may be associated with PE/E and that using national health surveillance data can improve understanding of this association. This approach can potentially be leveraged in the future to inform targeted interventions to high risk regions and times

    A Seismic Performance Classification Framework to Provide Increased Seismic Resilience

    Get PDF
    Several performance measures are being used in modern seismic engineering applications, suggesting that seismic performance could be classified a number of ways. This paper reviews a range of performance measures currently being adopted and then proposes a new seismic performance classification framework based on expected annual losses (EAL). The motivation for an EAL-based performance framework stems from the observation that, in addition to limiting lives lost during earthquakes, changes are needed to improve the resilience of our societies, and it is proposed that increased resilience in developed countries could be achieved by limiting monetary losses. In order to set suitable preliminary values of EAL for performance classification, values of EAL reported in the literature are reviewed. Uncertainties in current EAL estimates are discussed and then an EAL-based seismic performance classification framework is proposed. The proposal is made that the EAL should be computed on a storey-by-storey basis in recognition that EAL for different storeys of a building could vary significantly and also recognizing that a single building may have multiple owners

    Real-world experience of nintedanib for progressive fibrosing interstitial lung disease in the UK

    Get PDF
    Background Nintedanib slows progression of lung function decline in patients with progressive fibrosing (PF) interstitial lung disease (ILD) and was recommended for this indication within the United Kingdom (UK) National Health Service in Scotland in June 2021 and in England, Wales and Northern Ireland in November 2021. To date, there has been no national evaluation of the use of nintedanib for PF-ILD in a real-world setting.Methods 26 UK centres were invited to take part in a national service evaluation between 17 November 2021 and 30 September 2022. Summary data regarding underlying diagnosis, pulmonary function tests, diagnostic criteria, radiological appearance, concurrent immunosuppressive therapy and drug tolerability were collected via electronic survey.Results 24 UK prescribing centres responded to the service evaluation invitation. Between 17 November 2021 and 30 September 2022, 1120 patients received a multidisciplinary team recommendation to commence nintedanib for PF-ILD. The most common underlying diagnoses were hypersensitivity pneumonitis (298 out of 1120, 26.6%), connective tissue disease associated ILD (197 out of 1120, 17.6%), rheumatoid arthritis associated ILD (180 out of 1120, 16.0%), idiopathic nonspecific interstitial pneumonia (125 out of 1120, 11.1%) and unclassifiable ILD (100 out of 1120, 8.9%). Of these, 54.4% (609 out of 1120) were receiving concomitant corticosteroids, 355 (31.7%) out of 1120 were receiving concomitant mycophenolate mofetil and 340 (30.3%) out of 1120 were receiving another immunosuppressive/modulatory therapy. Radiological progression of ILD combined with worsening respiratory symptoms was the most common reason for the diagnosis of PF-ILD.Conclusion We have demonstrated the use of nintedanib for the treatment of PF-ILD across a broad range of underlying conditions. Nintedanib is frequently co-prescribed alongside immunosuppressive and immunomodulatory therapy. The use of nintedanib for the treatment of PF-ILD has demonstrated acceptable tolerability in a real-world setting
    corecore