101 research outputs found

    Suspicion and treatment of severe sepsis. An overview of the prehospital chain of care

    Get PDF
    Sepsis is a life-threatening condition where the risk of death has been reported to be even higher than that associated with the major complications of atherosclerosis, i.e. myocardial infarction and stroke. In all three conditions, early treatment could limit organ dysfunction and thereby improve the prognosis

    The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points

    Get PDF
    We study the adjoint of the double layer potential associated with the Laplacian (the adjoint of the Neumann–Poincare´ operator), as a map on the boundary surface Γ of a domain in R 3 with conical points. The spectrum of this operator directly reflects the well-posedness of related transmission problems across Γ. In particular, if the domain is understood as an inclusion with complex permittivity ɛ, embedded in a background medium with unit permittivity, then the polarizability tensor of the domain is well-defined when (ɛ + 1)/(ɛ − 1) belongs to the resolvent set in energy norm. We study surfaces Γ that have a finite number of conical points featuring rotational symmetry. On the energy space, we show that the essential spectrum consists of an interval. On L 2 (Γ), i.e. for square-integrable boundary data, we show that the essential spectrum consists of a countable union of curves, outside of which the Fredholm index can be computed as a winding number with respect to the essential spectrum. We provide explicit formulas, depending on the opening angles of the conical points. We reinforce our study with very precise numerical experiments, computing the energy space spectrum and the spectral measures of the polarizability tensor in two different examples. Our results indicate that the densities of the spectral measures may approach zero extremely rapidly in the continuous part of the energy space spectrum

    Personalized therapy for mycophenolate:Consensus report by the international association of therapeutic drug monitoring and clinical toxicology

    Get PDF
    When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.</p

    Calibration and Validation of a Detailed Architectural Canopy Model Reconstruction for the Simulation of Synthetic Hemispherical Images and Airborne LiDAR Data

    No full text
    Canopy density measures such as the Leaf Area Index (LAI) have become standardized mapping products derived from airborne and terrestrial Light Detection And Ranging (aLiDAR and tLiDAR, respectively) data. A specific application of LiDAR point clouds is their integration into radiative transfer models (RTM) of varying complexity. Using, e.g., ray tracing, this allows flexible simulations of sub-canopy light condition and the simulation of various sensors such as virtual hemispherical images or waveform LiDAR on a virtual forest plot. However, the direct use of LiDAR data in RTMs shows some limitations in the handling of noise, the derivation of surface areas per LiDAR point and the discrimination of solid and porous canopy elements. In order to address these issues, a strategy upgrading tLiDAR and Digital Hemispherical Photographs (DHP) into plausible 3D architectural canopy models is suggested. The presented reconstruction workflow creates an almost unbiased virtual 3D representation of branch and leaf surface distributions, minimizing systematic errors due to the object–sensor relationship. The models are calibrated and validated using DHPs. Using the 3D models for simulations, their capabilities for the description of leaf density distributions and the simulation of aLiDAR and DHP signatures are shown. At an experimental test site, the suitability of the models, in order to systematically simulate and evaluate aLiDAR based LAI predictions under various scan settings is proven. This strategy makes it possible to show the importance of laser point sampling density, but also the diversity of scan angles and their quantitative effect onto error margins

    Erfassung von räumlichen Daten in multiplen Dimensionen – topographisches LiDAR

    No full text
    In den letzten Jahren stieg die Bedeutung räumlicher Information nicht nur in den Bereichen Forschung, Wissenschaft und öffentlicher Verwaltung, sondern auch für alltägliche Anwendungen. Durch neue Entwicklungen in der Sensortechnologie ermöglicht die Fernerkundung die Erfassung von geographischen Daten in zunehmend höherer zeitlicher und räumlicher Auflösung. Dies eröffnet zum einen neue Möglichkeiten in der Auswertung, Analyse und Anwendung solcher Daten, andererseits werden jedoch auch neue Anforderungen von themenspezifischen Anwendungen an die Datenerfassung gestellt. Ziel der Forschungen in der LiDAR Research Group des Instituts für Geographie an der Universität Innsbruck ist die Entwicklung und Anwendung von Methoden für die Analyse neuer Fernerkundungsdaten und Geoinformation zur Detektion, Kartierung und Quantifizierung von geographischen Phänomenen und Objekten im Natur- und Kulturraum. Ein Hauptaugenmerk liegt in der Erforschung des Potenzials der topographischen Information von Laserscanningdaten für die dreidimensionale Kartierung, das Monitoring von zeitlichen Veränderungen und die Modellierung von Prozessen in verschiedenen Maßstabsebenen. Im vorliegenden Beitrag wird ein Überblick über die Grundprinzipien der Abstraktion von realen Objekten zu digitalen 3D-Objekten aus Laserscanningdaten gegeben. An ausgewählten Beispielen werden konkrete Anwendungen für die Zivilgesellschaft gezeigt

    Erfassung von räumlichen Daten in multiplen Dimensionen – topographisches LiDAR

    No full text
    In den letzten Jahren stieg die Bedeutung räumlicher Information nicht nur in den Bereichen Forschung, Wissenschaft und öffentlicher Verwaltung, sondern auch für alltägliche Anwendungen. Durch neue Entwicklungen in der Sensortechnologie ermöglicht die Fernerkundung die Erfassung von geographischen Daten in zunehmend höherer zeitlicher und räumlicher Auflösung. Dies eröffnet zum einen neue Möglichkeiten in der Auswertung, Analyse und Anwendung solcher Daten, andererseits werden jedoch auch neue Anforderungen von themenspezifischen Anwendungen an die Datenerfassung gestellt. Ziel der Forschungen in der LiDAR Research Group des Instituts für Geographie an der Universität Innsbruck ist die Entwicklung und Anwendung von Methoden für die Analyse neuer Fernerkundungsdaten und Geoinformation zur Detektion, Kartierung und Quantifizierung von geographischen Phänomenen und Objekten im Natur- und Kulturraum. Ein Hauptaugenmerk liegt in der Erforschung des Potenzials der topographischen Information von Laserscanningdaten für die dreidimensionale Kartierung, das Monitoring von zeitlichen Veränderungen und die Modellierung von Prozessen in verschiedenen Maßstabsebenen. Im vorliegenden Beitrag wird ein Überblick über die Grundprinzipien der Abstraktion von realen Objekten zu digitalen 3D-Objekten aus Laserscanningdaten gegeben. An ausgewählten Beispielen werden konkrete Anwendungen für die Zivilgesellschaft gezeigt

    Trägerkreise in den Psalmen

    No full text
    • …
    corecore