113 research outputs found

    TiO2 Photocatalysis for the Transformation of Aromatic Water Pollutants into Fuels

    Get PDF
    The growing world energy consumption, with reliance on conventional energy sources and the associated environmental pollution, are considered the most serious threats faced by man-kind. Heterogeneous photocatalysis has become one of the most frequently investigated technolo-gies, due to its dual functionality, i.e., environmental remediation and converting solar energy into chemical energy, especially molecular hydrogen. H2 burns cleanly and has the highest gravimetric gross calorific value among all fuels. However, the use of a suitable electron donor, in what so-called “photocatalytic reforming”, is required to achieve acceptable efficiency. This oxidation half-reaction can be exploited to oxidize the dissolved organic pollutants, thus, simultaneously improving the water quality. Such pollutants would replace other potentially costly electron donors, achieving the dual-functionality purpose. Since the aromatic compounds are widely spread in the environment, they are considered attractive targets to apply this technology. In this review, different aspects are highlighted, including the employing of different polymorphs of pristine titanium dioxide as pho-tocatalysts in the photocatalytic processes, also improving the photocatalytic activity of TiO2 by loading different types of metal co-catalysts, especially platinum nanoparticles, and comparing the effect of various loading methods of such metal co-catalysts. Finally, the photocatalytic reforming of aromatic compounds employing TiO2-based semiconductors is presented

    Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System

    Get PDF
    The simultaneous photocatalytic H2 evolution with environmental remediation over sem-iconducting metal oxides is a fascinating process for sustainable fuel production. However, most of the previously reported photocatalytic reforming showed nonstoichiometric amounts of the evolved H2 when organic substrates were used. To explain the reasons for this phenomenon, a care-ful analysis of the products and intermediates in gas and aqueous phases upon the photocatalytic hydrogen evolution from oxalic acid using Pt/TiO2 was performed. A quadrupole mass spectrome-ter (QMS) was used for the continuous flow monitoring of the evolved gases, while high performance ion chromatography (HPIC), isotopic labeling, and electron paramagnetic resonance (EPR) were employed to understand the reactions in the solution. The entire consumption of oxalic acid led to a ~30% lower H2 amount than theoretically expected. Due to the contribution of the photo-Kolbe reaction mechanism, a tiny amount of formic acid was produced then disappeared shortly after the complete consumption of oxalic acid. Nevertheless, a much lower concentration of formic acid was generated compared to the nonstoichiometric difference between the formed H2 and the consumed oxalic acid. Isotopic labeling measurements showed that the evolved H2, HD, and/or D2 matched those of the solvent; however, using D2O decreased the reaction rate. Interestingly, the presence of KI as an additional hole scavenger with oxalic acid had a considerable impact on the reaction mechanism, and thus the hydrogen yield, as indicated by the QMS and the EPR measure-ments. The added KI promoted H2 evolution to reach the theoretically predictable amount and in-hibited the formation of intermediates without affecting the oxalic acid degradation rate. The pro-posed mechanism, by which KI boosts the photocatalytic performance, is of great importance in enhancing the overall energy efficiency for hydrogen production via photocatalytic organic reform-ing

    Application of EPR Spectroscopy in TiO2 and Nb2O5 Photocatalysis

    Get PDF
    The interaction of light with semiconducting materials becomes the center of a wide range of technologies, such as photocatalysis. This technology has recently attracted increasing attention due to its prospective uses in green energy and environmental remediation. The characterization of the electronic structure of the semiconductors is essential to a deep understanding of the photocatalytic process since they influence and govern the photocatalytic activity by the formation of reactive radical species. Electron paramagnetic resonance (EPR) spectroscopy is a unique analytical tool that can be employed to monitor the photoinduced phenomena occurring in the solid and liquid phases and provides precise insights into the dynamic and reactivity of the photocatalyst under different experimental conditions. This review focus on the application of EPR in the observation of paramagnetic centers formed upon irradiation of titanium dioxide and niobium oxide photocatalysts. TiO2 and Nb2O5 are very well-known semiconductors that have been widely used for photocatalytic applications. A large number of experimental results on both materials offer a reliable platform to illustrate the contribution of the EPR studies on heterogeneous photocatalysis, particularly in monitoring the photogenerated charge carriers, trap states, and surface charge transfer steps. A detailed overview of EPR-spin trapping techniques in mechanistic studies to follow the nature of the photogenerated species in suspension during the photocatalytic process is presented. The role of the electron donors or the electron acceptors and their effect on the photocatalytic process in the solid or the liquid phase are highlighted

    Accounting for Endogeneity in Maintenance Decisions and Overlay Thickness in a Pavement-Roughness Deterioration Model

    Full text link
    Pavement deterioration models are an important part of any pavement management system. Many of these models suffer from endogeneity bias because of the inclusion of independent variables correlated with unobserved factors, which are captured by the model's error terms. Examples of such endogenous variables include pavement overlay thickness and maintenance and rehabilitation activities, both of which are not randomly chosen but are in fact decision variables selected by pavement engineers based on field conditions. Inclusion of these variables in a pavement deterioration model can result in biased and inconsistent model parameter estimates, leading to incorrect insights. Previous research has shown that continuous endogenous variables, such as pavement overlay thickness, can be corrected using auxiliary models to replace the endogenous variable with an instrumented variable that has lower correlation with the unobserved error term. Discrete endogenous variables, such as the type of maintenance and rehabilitation activities, have been accounted for by modeling the likelihood of each potential outcome and developing individual deterioration models for each of the potential responses. This paper proposes an alternative approach to accommodate discrete endogenous variables-the selectivity correction method-that allows a single model to incorporate the impacts of all discrete choices. This approach is applied to develop a pavement-roughness progression model that incorporates both continuous and discrete endogenous variables using field data from Washington State. The result is a roughness progression model with consistent parameter estimates, which have more realistic values than those obtained in previous studies that used the same data

    The accuracy and precision of radiostereometric analysis in monitoring tibial plateau fractures

    Get PDF
    Background and purpose: The application of radiostereometric analysis (RSA) to monitor stability of tibial plateau fractures during healing is both limited and yet to be validated. We therefore evaluated the accuracy and precision of RSA in a tibial plateau fracture model. Methods: Combinations of 3, 6, and 9 markers in a lateral condyle fracture were evaluated with reference to 6 proximal tibial arrangements. Translation and rotation accuracy was assessed with displacement-controlled stages, while precision was assessed with dynamic double examinations. A comparison of error according to marker number and arrangement was completed with 2-way ANOVA models. Results: The results were improved using more tantalum markers in each segment. In the fracture fragment, marker scatter in all axes was achieved by a circumferential arrangement (medial, anterior, and lateral) of the tantalum markers above the fixation devices. Markers placed on either side of the tibial tuberosity and in the medial aspect of the fracture split represented the proximal tibial reference segment best. Using 6 markers with this distribution in each segment, the translation accuracy (root mean square error) was less than 37 μm in all axes. The precision (95% confidence interval) was less than ± 16 μm in all axes in vitro. Rotation, tested around the x-axis, had an accuracy of less than 0.123° and a precision of ± 0.024°. Interpretation: RSA is highly accurate and precise in the assessment of lateral tibial plateau fracture fragment movement. The validation of our center's RSA system provides evidence to support future clinical RSA fracture studies.Lucian B Solomon, Aaron W Stevenson, Stuart A Callary, Thomas R Sullivan, Donald W Howie, and Mellick J Chehad

    Breast cancer risk factor knowledge among nurses in teaching hospitals of Karachi, Pakistan: a cross-sectional study

    Get PDF
    BACKGROUND: Breast cancer is the most common cancer among women in both the developed and the developing world. The incidence of breast cancer in Karachi, Pakistan is 69.1 per 100,000 with breast cancer presentation in stages III and IV being common (≥ 50%). The most pragmatic solution to early detection lies in breast cancer education of women. Nurses constitute a special group having characteristics most suited for disseminating breast cancer information to the women. We assessed the level of knowledge of breast cancer risk factors among registered female nurses in teaching hospitals of Karachi. We also identified whether selected factors among nurses were associated with their knowledge of breast cancer risk factors, so that relevant measures to improve knowledge of nurses could be implemented. METHODS: A cross-sectional survey was conducted in seven teaching hospitals of Karachi using stratified random sampling with proportional allocation. A total of 609 registered female nurses were interviewed using a structured questionnaire adapted from the Stager's Comprehensive Breast Cancer Knowledge Test. Knowledge of breast cancer risk factors was categorized into good, fair and poor categories. Ordinal regression was used to identify factors associated with risk knowledge among nurses. RESULTS: Thirty five percent of nurses had good knowledge of risk factors. Graduates from private nursing schools (aOR = 4.23, 95% CI: 2.93, 6.10), nurses who had cared for breast cancer patients (aOR = 1.41, 95% CI: 1.00, 1.99), those having received a breast examination themselves (aOR = 1.56, 95% CI: 1.08, 2.26) or those who ever examined a patient's breast (aOR = 1.87, 95% CI: 1.34, 2.61) were more likely to have good knowledge. CONCLUSION: A relatively small proportion of the nursing population had good level of knowledge of the breast cancer risk factors. This knowledge is associated with nursing school status, professional breast cancer exposure and self history of clinical breast examination. Since only about one-third of the nurses had good knowledge about risk factors, there is a need to introduce breast cancer education in nursing schools particularly in the public sector. Continuing nursing education at the workplace can be of additional benefit

    Guilt, shame, and postpartum infant feeding outcomes: A systematic review

    Get PDF
    Abstract Negative maternal affect (e.g., depression and anxiety) has been associated with shorter breastfeeding duration and poorer breastfeeding intention, initiation, and exclusivity. Other affective states, including guilt and shame, have been linked with formula feeding practice, though existing literature has yet to be synthesised. A narrative synthesis of quantitative data and a framework synthesis of qualitative and quantitative data were conducted to explore guilt and/or shame in relation to infant feeding outcomes. Searches were conducted on the DISCOVER database between December 2017 and March 2018. The search strategy was rerun in February 2020, together yielding 467 studies. The study selection process identified 20 articles, published between 1997 and 2017. Quantitative results demonstrated formula feeders experienced guilt more commonly than breastfeeding mothers. Formula feeders experienced external guilt most commonly associated with healthcare professionals, whereas breastfeeding mothers experienced guilt most commonly associated with peers and family. No quantitative literature examined shame in relation to infant feeding outcomes, warranting future research. The framework synthesis generated four distinct themes which explored guilt and/or shame in relation to infant feeding outcomes: ‘underprepared and ineffectively supported’, ‘morality and perceived judgement’ (breastfeeding), ‘frustration with infant feeding care’ and ‘failures, fears and forbidden practice’ (formula feeding). Both guilt and shame were associated with self‐perception as a bad mother and poorer maternal mental health. Guilt and shame experiences were qualitatively different in terms of sources and outcomes, dependent on infant feeding method. Suggestions for tailored care to minimise guilt and shame, while supporting breastfeeding, are provided

    A nationwide study on reproductive function, ovarian reserve, and risk of premature menopause in female survivors of childhood cancer: design and methodological challenges

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in childhood cancer treatment over the past decades have significantly improved survival, resulting in a rapidly growing group of survivors. However, both chemo- and radiotherapy may adversely affect reproductive function. This paper describes the design and encountered methodological challenges of a nationwide study in the Netherlands investigating the effects of treatment on reproductive function, ovarian reserve, premature menopause and pregnancy outcomes in female childhood cancer survivors (CCS), the DCOG LATER-VEVO study.</p> <p>Methods</p> <p>The study is a retrospective cohort study consisting of two parts: a questionnaire assessing medical, menstrual, and obstetric history, and a clinical assessment evaluating ovarian and uterine function by hormonal analyses and transvaginal ultrasound measurements. The eligible study population consists of adult female 5-year survivors of childhood cancer treated in the Netherlands, whereas the control group consists of age-matched sisters of the participating CCS. To date, study invitations have been sent to 1611 CCS and 429 sister controls, of which 1215 (75%) and 333 (78%) have responded so far. Of these responders, the majority consented to participate in both parts of the study (53% vs. 65% for CCS and sister controls respectively). Several challenges were encountered involving the study population: dealing with bias due to the differences in characteristics of several types of (non-) participants and finding an adequately sized and well-matched control group. Moreover, the challenges related to the data collection process included: differences in response rates between web-based and paper-based questionnaires, validity of self-reported outcomes, interpretation of clinical measurements of women using hormonal contraceptives, and inter- and intra-observer variation of the ultrasound measurements.</p> <p>Discussion</p> <p>The DCOG LATER-VEVO study will provide valuable information about the reproductive potential of paediatric cancer patients as well as long-term survivors of childhood cancer. Other investigators planning to conduct large cohort studies on late effects may encounter similar challenges as those encountered during this study. The solutions to these challenges described in this paper may be useful to these investigators.</p> <p>Trial registration</p> <p>NTR2922; <url>http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2922</url></p

    Impact of neuraminidase inhibitors on influenza A(H1N1)pdm09‐related pneumonia: an individual participant data meta‐analysis

    Get PDF
    BACKGROUND: The impact of neuraminidase inhibitors (NAIs) on influenza‐related pneumonia (IRP) is not established. Our objective was to investigate the association between NAI treatment and IRP incidence and outcomes in patients hospitalised with A(H1N1)pdm09 virus infection. METHODS: A worldwide meta‐analysis of individual participant data from 20 634 hospitalised patients with laboratory‐confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n = 613) ‘pandemic influenza’. The primary outcome was radiologically confirmed IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling, adjusting for NAI treatment propensity, antibiotics and corticosteroids. RESULTS: Of 20 634 included participants, 5978 (29·0%) had IRP; conversely, 3349 (16·2%) had confirmed the absence of radiographic pneumonia (the comparator). Early NAI treatment (within 2 days of symptom onset) versus no NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06; P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P = 0·537)], but early treatment versus later significantly reduced mortality [adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. CONCLUSIONS: Early NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection versus no treatment did not reduce the likelihood of IRP. However, in patients who developed IRP, early NAI treatment versus later reduced the likelihood of mortality and needing ventilatory support
    corecore