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Abstract: The growing world energy consumption, with reliance on conventional energy sources and
the associated environmental pollution, are considered the most serious threats faced by mankind.
Heterogeneous photocatalysis has become one of the most frequently investigated technologies, due
to its dual functionality, i.e., environmental remediation and converting solar energy into chemical
energy, especially molecular hydrogen. H2 burns cleanly and has the highest gravimetric gross
calorific value among all fuels. However, the use of a suitable electron donor, in what so-called
“photocatalytic reforming”, is required to achieve acceptable efficiency. This oxidation half-reaction
can be exploited to oxidize the dissolved organic pollutants, thus, simultaneously improving the
water quality. Such pollutants would replace other potentially costly electron donors, achieving the
dual-functionality purpose. Since the aromatic compounds are widely spread in the environment,
they are considered attractive targets to apply this technology. In this review, different aspects
are highlighted, including the employing of different polymorphs of pristine titanium dioxide as
photocatalysts in the photocatalytic processes, also improving the photocatalytic activity of TiO2 by
loading different types of metal co-catalysts, especially platinum nanoparticles, and comparing the
effect of various loading methods of such metal co-catalysts. Finally, the photocatalytic reforming of
aromatic compounds employing TiO2-based semiconductors is presented.

Keywords: TiO2; aromatic compound; PAHs; H2 production; photocatalytic reforming; water reme-
diation

1. Introduction

Water is essential for the existence of all living beings. However, its pollution with
organic and inorganic compounds remains a threat and poses great risks to the environment
and human health. The water quality is merely a concept reflecting the kind and quantity
of contaminants contained in it. Mining and petrochemical industries are instrumental
in the economic growth of many countries and their products are regarded as privileges
to modern communities [1]. However, the wastes generated from the activities of these
industries are toxic and carcinogenic [2]. Thus, these wastes have been classified as
“hazardous” [3], and there is a constant increase in the pollution concerns associated with
various petrochemical compounds and their by-products in the form of water, air, and
soil pollution. Many of these by-products are still extensively employed, especially in
the chemical, medical, and other industrial fields, as irreplaceable and inevitable raw
materials [4–7]. Aromatic compounds, such as benzene, phenol, and chlorobenzene,
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are some of the most encountered volatile organic compounds (VOCs). The primary
sources of VOCs are originated from a large number of anthropogenic activities, such
as refinery streams, especially from catalytic reforming and cracking, and petroleum
refining, petrochemical processing, and solvent use [8,9]. Other VOCs, such as methane
and chlorofluorocarbons, are classified as “greenhouse gases”, which cause global warming.

The aromatic ring is the basic constituent of many organic pollutants, such as pol-
yaromatic hydrocarbons (PAHs), dyes, pesticides, and pharmaceuticals. Aromatic com-
pounds, such as benzene, phenols, and benzoic acid, are the most frequently used model
substrates to investigate the photocatalytic mechanism and to test the activity of the
photocatalysts [10–13]. Detailed studies have been made on the harm caused by the aro-
matic compounds, for example, the potential relationship between the benzene-related
compounds and the risk of hematologic cancers, such as lymphoid malignancies [14]. More-
over, long-term exposure to a low concentration of such compounds could predispose to
the development of type 2 diabetes (T2D) and affect human metabolism [15,16]. Aromatic
organic compounds also contribute to serious environmental problems, such as water
pollution, which may result in the demise of scarce species, and biological genetic variation,
which in many cases is an irreversible problem [17,18].

Semiconductor photocatalysis has been extensively studied in the past 30 years as
a promising method of environmental cleanup and sterilization. However, an earlier
description of the photocatalytic properties of some metal oxides was given in 1955 by
Markham [19], who dealt with ZnO, Sb2O3, and TiO2, and the various types of photochem-
ical changes that these oxides could undergo, including the catalyzed oxidation of organic
compounds under UV irradiation. Later, and in 1972, a short note published in Nature by
Fujishima and Honda [20] demonstrated that water could be photolyzed electrochemically
at an illuminated TiO2 and Pt electrode combination to yield stoichiometric quantities of
H2 and O2. What followed soon thereafter was a frenzied series of studies in search of the
photocatalytic materials to produce H2 fuel as part of the beginnings of the hydrogen econ-
omy. Many semiconductors showed photocatalytic properties like MoS2 [21], WO3 [22],
BiFeO3 [23], Fe2O3 [24], and CdTe [25,26], but only a few of them fulfill the thermodynamic
requirements for overall water splitting, such as KTaO3, SrTiO3, TiO2, ZnS, and SiC. What
seems a simple basic function like the excitation of the semiconductor by absorption of
light results in the formation of the charge carrier, i.e., the valence band holes, h+vb, and
the conduction band electrons, e−cb. However, because of the strong oxidation ability of h+vb
and reactive oxygen species like •OH, •OOH, and H2O2, which are formed from the h+vb
oxidation of H2O and e−cb reduction of O2, most organic compounds can be oxidized, even
mineralized to CO2 and H2O in the photocatalytic systems. Due to the challenges that
remain in achieving overall pure water splitting, the alternative approach is to combine
light-induced splitting of water and photooxidation of organic substrates into a single
process in so-called photocatalytic reforming [27].

TiO2 is one of the most studied photocatalysts, it was greatly debated in many aspects
like the nature of the oxidative agent (•OH radicals vs. h+), the site at which the reaction
takes place (surface versus bulk solution), how to improve performance, and efficiency
of TiO2 photocatalytic properties. Unfortunately, TiO2 has a relatively large bandgap
(3.2 eV) so that only UV radiation can activate it, its conduction band is somewhat positive
in relation to the redox potential for H2 evolution. Clearly, new semiconductor-based
nanostructured materials are needed that would use lower-energy photons available in
the visible spectral region. A strategy developed mostly in the past decade was to push
the absorption onset of TiO2 toward longer wavelengths (≥387 nm) by doping TiO2 with
anions and/or cations (N, C, S, F,..., and metal ions) [28]. Despite the many studies carried
out with TiO2, no other metal oxide has yet been found that might act as an efficient
photoanode with conduction and valence band edges that straddle the redox potentials of
water and many water organic pollutants.

In the first part of this review, we discuss the different classes of aromatic organic
hydrocarbons pollutants with an emphasis on their chemical, structural, and physical
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properties. Their environmental hazards, health threats, and their ability to leak into the
different components of the environment especially the aquatic environment are also dis-
cussed. In the following parts of this review, we provide the reader with an overview of the
conventional methods adopted for the treatment of organic pollutants against the recent
methods used and the new trends to be evaluated and debated. The fundamental and
electronic structure of semiconductor–photocatalyst, the significant parameters affecting
its performance, and photocatalytic water splitting versus photocatalytic reforming are
reviewed in detail. The next part of this review is dedicated to TiO2, which is one of the
most widely studied semiconductors, with emphasis on the photocatalytic properties of its
different phases and how to enhance the performance of pristine TiO2 by the loading of
noble metals. Finally, and based on the recent research investigations, the current perspec-
tive for photocatalytic reforming of aromatic-based pollutants towards H2 production and
water decontamination is reviewed and highlighted.

2. Aromatic Hydrocarbons as Water Pollutants

Many pollutants discarded into the environment contain non-degradable substances
like heavy metals and organic pollutants [29–31]. The persistent organic pollutants, such
as pesticides [32], aromatic organic compounds (OCs) [33,34], semi-volatile organic com-
pounds (SVOCs) [35–37], and organic dyes [38,39] are gaining great environmental concerns
due to their impacts on health and environment. These compounds have grasped much
attention due to their carcinogenic potential and ubiquitous presence in the environment,
which pose a major threat to water reservoirs and the surrounding ecosystem.

The aromatic organic compounds, such as benzene, toluene, ethylbenzene, and xylenes
(BTEX), polyaromatic hydrocarbons (PAHs), phenols, and their derivatives are frequently
detected in different wastewater resources [40]. The removal of these organic pollutants
is a must to reuse this water since such pollutants cannot be eliminated efficiently during
conventional treatment processes. The reuse of this treated water, especially in irrigation of
crops, contains great risks due to the transfer of these pollutants to plants, thus, through
the food chain to living organisms [32,35]. The following subsections provide a brief
description of the main types of these pollutants.

2.1. Phenols

Phenolic compounds are a class of organic compounds that consists of a hydroxyl
group(s) directly bonded to one or more aromatic rings. The phenolic compounds are
classified as priority pollutants due to their carcinogenic, mutagenic properties, and high
toxicity even at low concentrations [41]. These compounds represent serious threats to
human health, e.g., skin and eye irritations, anemia, respiratory, and vertigo [42]. The
Environmental Protection Agency (EPA) sets the level standard of phenols in the surface
water to less than 1 µg·L−1, while, the toxicity levels for both humans and aquatic life
are usually in the range 9–25 mg·L−1 [41]. Phenols are one of the main intermediates
for household and industrial productions of cleaners, dyes, pesticides, herbicides, paint,
pharmaceuticals, petrochemicals, cooking operations, resin manufacturing, plastics, pulp,
paper, and wood products [33,42]. They are usually detected in the wastewater effluents in
very high concentrations up to thousands of mg·L−1 [43].

The first member of this category of organic compounds is phenol with the chemi-
cal formula of C6H5OH. All other members of the group are derivatives of phenol [44].
Chlorophenols are the largest group and most spread group of phenols. They are formed
in the environment by chlorination of mono and polyaromatic compounds present in soil
and water [42]. Moreover, the reaction of hypochlorite with phenolic acids during the treat-
ments and disinfection processes leads to the formation of such chlorinated compounds.
Chlorinated phenols, e.g., 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and
pentachlorophenol (Chart 1), are listed by the U.S. EPA as priority organic pollutants [45,46].
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2.2. Polyaromatic Hydrocarbons

Another kind of organic pollutants that causes water contamination is the PAHs,
which are classified as hazardous persistent environmental pollutants [47]. They are a
group of over 100 different organic compounds containing two or more fused aromatic
benzene rings connected linearly, angularly, or in a cluster arrangement [48,49]. PAHs
are found naturally and released into the environment by anthropogenic sources. The
incomplete combustion of wood, coal, oil, gas, garbage, and other organic substances,
pyrosynthesis or pyrolysis of hydrocarbons (petrogenesis), and the leakage of crude oil and
refined petroleum products are considered the main sources of the PAHs [47,50,51]. The
surface runoff from roads is another major source of the PAHs in the aquatic system [52,53].
Surface-active compounds and humic substances increase the solubility of PAHs several
times. Huang and Buekens [54] reported the formation of the PAHs under insufficient
combustion conditions of the aliphatic fuels. Under these conditions, carbon containing-
compounds are not oxidized completely to carbon dioxide, rather, hydrocarbon fragments
that are generated during incomplete combustion interact with each other to yield complex
polycyclic structures. Many other resources for the PAHs [49,53] are shown in Figure 1.
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PAHs have low aqueous solubility and are considered as lipophilic organic compounds
that are widely distributed in the environment and characterized by their high toxicity,
genotoxicity, and carcinogenicity. [49,55]. Table 1 shows the physicochemical properties
of 16 compounds of the PAHs that have been listed as priority pollutants by the United
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States Environmental Protection Agency [50,56]. PAHs of two and three aromatic rings,
e.g., naphthalene and anthracene, are known as low molecular weight (LMW). Those
compounds possess higher solubility in water and higher volatility than that of the high
molecular weight (HMW) PAHs [57]. In fact, higher concentrations of the LMW PAHs have
been reported in wastewater influent and effluent comparing to the HMW PAHs, which
can be related to their higher water solubility [35,40,58–61].

Naphthalene (C10H8) is the simplest form of PAHs and possesses higher volatility
besides its higher solubility in water (31.7 mg·L−1 at 25 ◦C) compared to other PAH
compounds. Naphthalene is widely used in industry as an intermediate in the production
of pesticides, phthalic anhydride, dyes, resins, and surfactants [62,63]. Moreover, it is found
in many consumer products like mothballs and some insect repellent products that are
used to kill moths in airtight spaces, and to repel vertebrate pests in attics and wall voids
spaces [64]. In general, naphthalene was found the most ubiquitous and abundant PAH in
wastewater with concentrations ranged between ng·L−1 to µg·L−1 [47,59–61,65,66].

2.3. Organic Dyes

Dyes are colored substances that have an affinity for the substrate to which they are
being applied. They have colors due to their absorption of light at a certain wavelength
in the visible range. Due to their high molar extinction coefficients, a small amount of
dye in an aqueous solution can produce a vivid color [67,68]. Synthetic dyes possess
very different chemical and physical properties. Azo, anthraquinone, xanthene, indigoid,
triphenylmethane, and phthalocyanine derivatives are the most frequent chemical classes
of dyes employed in the industry (Chart 2) [67–71].
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Table 1. Physiochemical properties of the 16 U.S. Environmental Protection Agency (EPA) PAHs [53,72,73].

Compound Name Chemical Structure Chemical
Formula Number of Rings

Molecular
Weight
(g\mol)

Melting
Point (◦C)

Boiling
Point (◦C)

Aqueous
Solubility

(mg/L)

Vapor
Pressure

(Pa)
Log
Kow

Naphthalene
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C22H14 6 278.35 262 No data 0.0006 3.7 × 10−10 6.75 

Benzo[ghi]perylene 

 

C22H12 6 276.33 273 550 0.00026 1.4 × 10−8 6.50 

Indeno[1,2,3-cd]pyrene 

 

C22H12 6 276.33 163.6 530 0.00019 - 6.50 

Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C12H8 3 152.19 92–93 265–275 16 9.0 × 10−1 4.00

Fluorene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
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C13H10 3 166.22 116–117 295 1.9 9.0 × 10−2 4.18

Anthracene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
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C14H10 3 178.23 218 340–342 0.045 1.0 × 10−3 4.54

Phenanthrene

Catalysts 2021, 11, x FOR PEER REVIEW 6 of 45 
 

 

Table 1. Physiochemical properties of the 16 U.S. Environmental Protection Agency (EPA) PAHs 
([53,72,73]. 

Compound Name Chemical Structure Chemical 
Formula 

Number of 
Rings 

Molecular 
Weight 
(g\mol) 

Melting 
Point (°C) 

Boiling 
Point (°C) 

Aqueous 
Solubility 

(mg/l) 

Vapor 
Pressure 

(Pa) 

Log 
Kow 

Naphthalene  C10H8 2 128.17 80.26 218 31 1.0 × 102 3.37 

Acenaphthene 
 

C12H10 3 154.21 93.4 279 3.8 3.0 × 10−1 3.92 

Acenaphthylene 
 

C12H8 3 152.19 92–93 265–275 16 9.0 × 10−1 4.00 

Fluorene 
 

C13H10 3 166.22 116–117 295 1.9 9.0 × 10−2 4.18 

Anthracene  C14H10 3 178.23 218 340–342 0.045 1.0 × 10−3 4.54 

Phenanthrene 
 

C14H10 3 178.23 100 340 1.1 2.0 × 10−2 4.57 

Fluoranthene 
 

C16H10 4 202.25 110.8 375 0.26 1.2 × 10−3 5.22 

Pyrene 
 

C16H10 4 202.25 156 393–404 0.13 6.0 × 10−4 5.18 

Benzo[a]anthracene 
 

C20H12 4 228.29 158 438 0.011 2.8 × 10−5 5.91 

Chrysene 
 

C18H12 4 228.29 254 448 0.006 5.7 × 10−7 5.91 

Benzo[b]fluoranthene 
 

C20H12 5 252.31 168.3 No data 0.0015 - 5.80 

Benzo[k]fluoranthene 
 

C20H12 5 252.31 215.7 480 0.0008 5.2 × 10−8 6.00 

Benzo[a]pyrene 
 

C20H12 5 252.31 179–179.3 495 0.0038 7.0 × 10−7 5.91 

Dibenzo[a,h]anthracene 

 

C22H14 6 278.35 262 No data 0.0006 3.7 × 10−10 6.75 

Benzo[ghi]perylene 

 

C22H12 6 276.33 273 550 0.00026 1.4 × 10−8 6.50 

Indeno[1,2,3-cd]pyrene 

 

C22H12 6 276.33 163.6 530 0.00019 - 6.50 

Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C14H10 3 178.23 100 340 1.1 2.0 × 10−2 4.57

Fluoranthene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C16H10 4 202.25 110.8 375 0.26 1.2 × 10−3 5.22

Pyrene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C16H10 4 202.25 156 393–404 0.13 6.0 × 10−4 5.18

Benzo[a]anthracene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C20H12 4 228.29 158 438 0.011 2.8 × 10−5 5.91

Chrysene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C18H12 4 228.29 254 448 0.006 5.7 × 10−7 5.91

Benzo[b]fluoranthene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C20H12 5 252.31 168.3 No data 0.0015 - 5.80
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Table 1. Cont.

Compound Name Chemical Structure Chemical
Formula Number of Rings

Molecular
Weight
(g\mol)

Melting
Point (◦C)

Boiling
Point (◦C)

Aqueous
Solubility

(mg/L)

Vapor
Pressure

(Pa)
Log
Kow

Benzo[k]fluoranthene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because of 
their extensive usage in printing, paint, and textile industries. These compounds are char-
acterized especially by their non-reactivity, long-lasting coloring, and highly stable struc-

C20H12 5 252.31 215.7 480 0.0008 5.2 × 10−8 6.00

Benzo[a]pyrene
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Synthetic organic dyes are introduced in the aquatic environment [74,75] because
of their extensive usage in printing, paint, and textile industries. These compounds are
characterized especially by their non-reactivity, long-lasting coloring, and highly stable
structures [74]. Besides their carcinogenic effect, many dyes affect human life, such as
dysfunction of the central nervous system (CNS), kidney, reproductive system, brain, and
liver [74,76,77]. Wastewaters from textile and other dyes industrial processes contain large
quantities of these organic pollutants, which are difficult to degrade during the standard
biological methods and resist aerobic degradation. Moreover, Due to their high solubility
in water, the removal of the dyes from wastewater through conventional methods is
very difficult and ineffective [71,78]. Degradation of certain types of dye produces more
hazardous pollutants than the dye itself. For example, under anaerobic conditions, organic
dyes, such as azo dye, can be reduced to potentially carcinogenic aromatic amine [68,79].

3. Methods of Treatment

As outlined beforehand, toxic organic pollutants are widespread in the environment,
thus, it is highly recommended to eliminate or reduce the concentration of such pollutants
in the aquatic environment to safe levels [53,80–83]. Numerous conventional treatment
processes have been applied and tested for wastewater treatment, such as adsorption,
coagulation, precipitation, biodegradation, ozonation, electrochemical oxidation, and ad-
vanced oxidation processes [43,47,83–88]. Besides that, combining some of these processes,
such as the biological–physical, or chemical processes, has been successfully applied in
many wastewater treatment plants [89–92]. Although many of these processes have been
considered effective and efficient for removing a wide spectrum of organic pollutants from
the wastewater; however, each process has disadvantages that limit the large-scale appli-
cation, e.g., small capacity, high costs, pH-dependency, limited recyclability, high-energy
requirements, incomplete pollutant removal, and generation of toxic secondary materials
(Table 2) [87,93–96].

Table 2. Different removal techniques used for wastewater treatment and their advantage(s) and disadvantage(s).

Removal Techniques Advantage(s) Disadvantage(s)

a) Coagulation � The additive coagulants easily
settled with the suspended
particle.

� Rapid and efficient for insoluble
contaminants.

� Low-cost operation.

� pH monitoring of the effluent.
� The dissolved organic

pollutants are not completely
removed.

� Formation of sludge and
secondary pollutants.

b) Electrochemical oxidation � Recycling of valuable metals.
� Increases biodegradability.
� Not require auxiliary chemicals

or high temperatures.

� Required pre-filtration;
formation of sludge.

� High initial cost of the
equipment

� Low selectivity and low
reaction rates.

c) Biological process � Simple, economically attractive.
� Ecologically favorable process.

� Poor decolorization.
� Formed uncontrolled

degradation products.
� High capital and operational

cost.
� The secondary sludge problems.
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Table 2. Cont.

Removal Techniques Advantage(s) Disadvantage(s)

d) Adsorption � Cost-effective and simple method.
� The most profitable process and

more efficient than the conventional
methods (i.e., precipitation, solvent
extraction, membrane filtration,
etc.).

� Removes the pollutants from one
phase (aqueous) to another (solid
matrix).

� Expensive regeneration process
especially if the pollutants are
strongly bound to the adsorbents.

e) Chemical precipitation � Adapted to high pollutant loads.
� Simple equipment and processes.

� Chemical consumption.
� High sludge production.

f) Advanced Oxidation Processes (AOP)

I. Ozonation � Powerful oxidation technique for a
large number of pollutants.

� Complex technology.
� High capital/operational cost.
� High electric consumption.

II. UV � An effective method that typically
does not produce harmful
by-products.

� Low efficiency when the
wastewater contains a high number
of particulates that absorb UV light.

III. UV/H2O2 � An effective technique in the
oxidation and mineralization of
most organic pollutants.

� Ease formation of OH• radicals.

� Less effective, when the wastewater
has high absorbance.

� High operational cost.

IV. O3/UV/H2O2 � Most effective process due to the
fast generation of OH• radicals.

� Can treat a wide variety of
contaminants.

� Needs to compete with high
turbidity, solid particles, and heavy
metal ions in the aqueous stream.

� High operational cost.

V. Fenton reaction � Simple process.
� Easy availability of chemicals.

� Production of iron sludge waste,
bringing logistical problems with
handling.

VI. Photo-Fenton reaction � Reduction of sludge iron waste
compared to the original Fenton
reaction.

� Effective and fast degradation.

� Requires a controlled pH medium
for better performance.

VII. Heterogeneous photocatalysis � Long-term stability at high
temperature.

� Resistance to attrition.
� Low-cost and environmentally

benign treatment technology.

� Formation a harmful byproduct to
the environment.

� Requires efficient catalysts that can
absorb a wide range of light.

Among many developed and examined methods for eliminating the persistent organic
pollutants from the environment (especially aquatic environment), advanced oxidation
processes (AOPs) are the most promising techniques. They are also the most studied and the
best environmental-friendly techniques for removing these pollutants. These processes are
based on the formation of in-situ highly reductive or oxidative free radicals, e.g., hydroxyl
radicals (OH•), at sufficient concentration to effectively mineralize the hazardous organic
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compounds and decontaminate water under ambient conditions [95,97]. Several AOP
techniques have been explored to decompose the organic pollutants in the water resources
by chemical oxidation or reduction such as ozonation, H2O2 photolysis, Fenton process,
photo-Fenton process, and heterogeneous photocatalysis [97–100]. Scheme 1 shows the
types and the general classification of the AOP [100].
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By far, heterogeneous photocatalysis has gained the most attention as one of the most
realistic and viable solutions due to its ability to clean-up a wide range of environmen-
tal pollutants besides the use of low-cost and chemical stable photocatalysts [101–108].
This promising approach relies on the excitation of a semiconductor with suitable light,
e.g., the sunlight, to drive different redox reactions. Heterogeneous photocatalysis is a
process that includes a large variety of reactions, such as oxidation, dehydrogenation,
water splitting (reduction, H2 production; oxidation, O2 production), organic synthesis,
photoreduction, metal deposition, hydrogen production, gaseous pollutant removal, and
water purification [109]. Photocatalysis is a sustainable and economical technology that
can exploit the inexhaustibly abundant clean energy of the sun [104,109,110]. The use
of an efficient nanoparticulate semiconductor is required for the detoxification of the
wastewater via photocatalysis, which has the potential to degrade the toxic substances
in the water, such as contaminants and microorganisms [111–113]. Due to their narrow
bandgap and distinct electronic structure (unoccupied conduction band and occupied
valence band) [20,114,115], various kinds of photocatalysts, including TiO2, Gr-TiO2, CdS,
SnO2, WO3, SiO2, ZnO, Nb2O3, Fe2O3, have been studied to degrade a variety of organic
and inorganic pollutants [102,115–117].

Nowadays, the photooxidation of organic pollutants based on TiO2 nanomaterials
is still gain huge attention. Several recent studies have shown the effective role of TiO2
in oxidizing and mineralizing a wide range of hazardous organic contaminants [118,119],
such as alcohol [120,121], organic acids [122], aromatic hydrocarbons [104], phenols [123],
dyes [124], pharmaceuticals [125,126], and pesticides [126]. The photocatalytic oxidation
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of organic pollutants proceeds either by the direct attack of the photogenerated holes
or via the attack of the highly reactive hydroxyl radicals generated at the surface of the
photocatalyst [110]. The photocatalytically generated OH• radicals can abstract hydrogen
atoms from the organic molecules, causing a chain of reactions toward lower molecular
intermediates and may end up in the complete mineralization of the pollutants [127].

Another major field in photocatalysis includes light-driven water splitting into H2
and O2 [128]. H2 is regarded as the most recommended replacement for fossil fuels since
its energy cycle is free of pollutants and greenhouse gases [105,129,130]. Achieving dual-
functional photocatalysis, i.e., the photocatalytic degradation of organic pollutants and the
simultaneous production of hydrogen gas is an added value of this technique [131]. Un-
fortunately, as will be discussed in the following sections, different operational conditions
should be applied for each process to achieve its optimal reaction yield [11].

4. Semiconductor-Based Heterogeneous Photocatalysis

A photocatalytic system is thermodynamically defined as a system, in which a reaction
with ∆G < 0 is driven through the photon absorption by a suitable material, i.e., the light
energy is exploited to drive a reaction having extremely low kinetics outside this system [132].
The photons are absorbed by such a system to generate accordingly charge carriers, i.e.,
electrons and holes, which induce a redox reaction. The semiconductors could be the light-
absorbing materials in heterogeneous systems and they are then known as photocatalysts [133].
Thus, heterogeneous photocatalysis depend on the distinctive properties of powdered semi-
conductor materials in harvesting incident light, generating charge carriers, and subsequently
initiating surface reactions. This may provide a simple means for environmental remediation
and photochemical energy conversion into fuels [134,135].

4.1. The Electronic Structure of a Semiconductor–Photocatalyst

The band model based on the concept of molecular orbitals can be used to explain
the electronic structure of a semiconductor. The electronic orbitals merge and split into
two bands, i.e., the valence band (VB) and the conduction band (CB). VB and CB of a
semiconductor are formed from the highest occupied molecular orbitals (HOMO) and the
lowest unoccupied molecular orbitals (LUMO), respectively [136]. At temperature 0 K, the
VB is the lower band that is completely filled with electrons, while the CB is the higher
band that is empty [137]. The difference in energy between the highest energy level in the
VB and the lowest energy level in the CB creates a region known as the energy bandgap
(Eg) [138]. The interaction between the electronic orbitals, forming the band structure of
a semiconductor is shown in Figure 2. Interestingly, the Eg values for semiconductors
are sufficiently small that the electrons promotion from the VB to the CB can be initiated
through an energy transfer to those materials [132]. The light energy that is higher or equal
to Eg induces the excitation of electrons from the VB to occupy partially filled states in the
CB generating an electron vacancy in the VB, which is known as the positively charged
hole [139]. This hole is considered as a mobile entity since it can be filled by another electron
creating a vacancy in the space where it has been transferred from [140]. The electrons in
the CB are, likewise, mobile entities having often higher mobility than those of the holes
(e.g., for Si, µn(electrons) = 1500 cm2·V−1·s−1 > µp(holes) = 450 cm2·V−1·s−1 [141]). Electrons
have consequently a higher diffusion coefficient than holes; however, the trapping of the
electrons leads to a decrease in their mobilities [142]. The e−/h+ species migrate then to
the surface of the semiconductor, where they can react with the adsorbed molecules. The
photogenerated holes act as oxidants (+1.0 to +3.5 V vs. NHE), while the photogenerated
electrons are potential reductants (+0.5 to −1.5 V vs. NHE) [143].
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Semiconductor photocatalysis is considered, from this point of view, as a multi-step
process, which is illustrated in Figure 3. Such a process is initiated by the photoexcitation
with electromagnetic radiation equal to or exceeding Eg (1), the separation of the charge
carrier pairs (2), the diffusion of e−/h+ species within the material towards the surface,
and the surface charge transfer for the reduction of adsorbed electron acceptors (3), and
the oxidation of adsorbed electron donors (4), respectively [145,146]. Accordingly, the
photo-induced electrons and holes should migrate to reach the surface of the material and
react with adsorbed chemical species via surface charge transfer [144]. Therefore, the Eg of
a semiconductor is the minimum thermodynamic requirement for photocatalysis [147–149].
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One of the main limitations of semiconductor photocatalysis is the recombination
of the photogenerated charge carriers, dissipating the absorbed energy as heat [138] and
affecting negatively the lifetime of the electrons and holes [144]. This undesired recombina-
tion occurred either indirectly, i.e., via surface defects (5), or directly, i.e., by band-to-band
recombination (6). Such phenomena are highly reliant on the crystal structure of the semi-
conductor. To enhance effectively the redox reactions while minimizing recombination, the
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photogenerated charge carriers must migrate to the liquid junction through the solid and
should react with adsorbed species directly at the semiconductor surface [148].

4.2. Photocatalytic Water Splitting vs. Photocatalytic Reforming

Photocatalytic H2 production from water splitting is accomplished under ambient
operating conditions and consists of two half-reactions as shown in Equations (1) and (2), i.e.,
the reduction of proton and the 4-electron oxidation of water, respectively [150]. A change
in free energy of ∆G0 = 237.2 kJ mol−1 is associated with the splitting of one H2O molecule
to H2 and 1/2 O2, which equals to ∆E◦ = 1.23 V according to the Nernst equation [151]. Thus,
the semiconductor should absorb photon energy of more than 1.23 eV (wavelengths shorter
than 1000 nm) to drive the water splitting photoreaction. The semiconductor can use their
photogenerated electrons/holes to convert the photon energy into H2 and O2 when the
energy of the conduction band-edge and the valence band-edge straddle the electrochemical
potentials E◦ (H+/H2) and E◦ (O2/H2O), respectively [150,152] (Figure 4). Accordingly,
the thermodynamic requirement for the water splitting is more cathodic and more anodic
energy levels of the CB bottom and VB top of a photocatalyst compared to the standard
electrode potential of (H+/H2) and (O2/H2O), respectively [152,153]. Therefore, from a
thermodynamic point of view, only a few photocatalysts, e.g., TiO2, are proficient to drive
the water splitting reaction. However, the efficiencies of heterogeneous photocatalytic water
splitting remain relatively low due to many reasons outlined in the next sections.

2H+ + 2e− → H2 (↑) E0 = 0 V vs. NHE (1)

H2O→ 1
2

O2 (↑) + 2H+ + 2e− E0 = 1.23 V vs. NHE (2)
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As a hybrid field, dual-functional photocatalysis is a combination of different photo-
catalytic fields for 2-fold purposes achieved in a single step [130]. The coupling of H2 evo-
lution and photocatalytic degradation of organic pollutants yielding CO2 can be achieved
in the so-called photoreforming process [38,132,153–156]. Such a technique has a great
advantage as it can benefit from solar light to treat wastewater, meanwhile, the evolved
CO2 can be consumed by natural photosynthesis [157]. In the photocatalytic reforming
process, the photogenerated holes in the valence band can oxidize adsorbed organic sub-
strates (electron donors or sacrificial reagents), whereas the photogenerated electrons
in the conduction band can reduce the protons (electron acceptor) to molecular hydro-



Catalysts 2021, 11, 317 14 of 44

gen [104,105,130,158,159]. Such an adsorbed organic substrate can react irreversibly with
the photogenerated holes, minimizing the undesired electron/hole recombination [150].

Even though H2 can be formed simultaneously with other processes, e.g., the organic
synthesis of organic compounds [160,161], however, such processes should not be consid-
ered as a dual function process [130]. The reforming process can be considered as a dual
function photocatalysis process only when some requirements have been met: (i) H2 is
mainly derived from the reduction of water and (ii) the targeted organic molecules are
pollutants, or their oxidation aimed to synthesize value-added products, such as aldehyde,
organic acid, and imine [130,162]. Consequently, photocatalytic reforming is an interme-
diate process between photocatalytic water splitting and the photocatalytic oxidation of
organic pollutants as shown in Figure 5.
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Organic substrates are generally stronger reducing agents than water, hence, a less
positive potential is necessary to oxidize these compounds. Accordingly, the energetic
separation of the redox half-reactions in photoreforming is narrower compared to that of
the overall water splitting [163]. As O2 is not produced in these systems, the back reaction
to produce water is suppressed, avoiding a subsequent gas separation stage [164]. A wide
range of organic compounds such as alcohols, organic acids, and hydrocarbons had proven
activity as electron donors for photocatalytic H2 production [101,104,105,131,150,165–167].
The evolution of H2 and its kinetic reactions pathway is dependent on the concentration
and the nature of the organic substrate [168,169].

4.3. Titanium Dioxide (TiO2) as a Photocatalyst

Titanium dioxide has been one of the most widely studied semiconductors in the last
decade for various photocatalytic applications [170]. This is related to its high reactivity,
hydrophilicity, low cost, and availability, physical and chemical stability, resistance to pho-
tocorrosion, and optimal electronic and optical capacity [97,111,139]. TiO2 is a transition-
metal oxide semiconductor composed of Ti4+ atoms and six O2− coordinated together to
form a TiO6 octahedron [171]. Like other transition metal oxides, TiO2 is often nonstoi-
chiometric with oxygen vacancies (Ov) as predominant defects at the near-atmospheric
oxygen pressure, granting it the properties of an intrinsic n-type semiconductor [172]. The
oxygen vacancies (Ov) at the surface of n-type TiO2 appear as extra unpaired electrons in
the CB [164,173], which act as donor-like states. This creates an accumulation layer in the
surface, resulting in a downward band bending [174].
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The photocatalytic activity of TiO2 is highly related to its charge carrier dynamics.
The e−/h+ pairs are generated within a few femtoseconds upon irradiation and they
can recombine easily either in the bulk or at the surface. However, other charge carriers
escape recombination and migrate to the surface, where they might be trapped before
the interfacial charge transfer in redox reactions [175]. Figure 6a and Equations (3)–(6)
demonstrate the potential fates of charge carriers upon the irradiation of TiO2, while
Figure 6b reports the time scale of each process [143,176].
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Photogeneration of the charge carriers:

TiO2 + hv→ TiO2 (e−CB/h+
VB) (3)

Trapping of the charge carriers:

e−CB + ≡TiIVOH→≡TiIIIOH (shallow trapping) (4a)

e−CB + ≡TiIV →≡TiIII (deep trapping) (4b)

hVB
+ + ≡TiIVOH→ {TiIVOH•}+ + (h+

tr) (4c)

Recombination of the charge carriers:

e−CB + {TiIVOH•}+ → TiIVOH (5a)

h+tr + ≡TiIIIOH→ TiIVOH (5b)

h+
tr + TiIII → TiIV (5c)

Interfacial charge transfer to the acceptor (A) or donor (D) adsorbed on the surface:

≡TiIIIOH + A→≡TiIVOH + A•− (6a)

{TiIVOH•}+ +D→≡TiIVOH + D•+ (6b)

Serpone et al. found that in the absence of scavengers, more than 90% of the initially
formed charge carriers recombine rapidly within 10 ns upon the irradiation of TiO2 in
aqueous media. Such high recombination results in less than 10% quantum yields of
photooxidation [177].
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On the other hand, the photogenerated charge carriers can be trapped either in the
bulk or at the surface as trapped holes and trapped electrons, with the surface trapping
being preferred for the subsequent interfacial charge transfer reactions [178]. Yoshihara
et al. showed in their Transient Absorption Spectroscopy study that both trapped holes
and electrons are found to be localized at the surface of photoexcited TiO2 particles, while
free electrons are distributed in the bulk [179]. Howe and Gratzel demonstrated in their
Electron Paramagnetic Resonance spectroscopy (EPR) studies on irradiated TiO2 that the
photogenerated electrons are localized in the d orbitals of Ti4+ while the photogenerated
holes are trapped at the lattice oxygen atoms, forming EPR-active paramagnetic centers,
i.e., Ti3+ and O•−, respectively [180,181]. Simultaneously, upon the generation, separation,
and transport of charge carriers in TiO2, e–/h+ pairs might participate in redox reactions via
interfacial charge carrier transfer. In aqueous media, water layers adsorb, physically and
chemically, on the TiO2 surface creating a TiO2/H2O interface [182]. The photogenerated
holes can react on the surface either with hydroxyl groups or with H2O resulting in
the formation of hydroxyl radicals, OH•. Therefore, not only h+ is produced by the
photoexcitation of TiO2 but also hydroxyl radicals can be formed on hydrated TiO2 surfaces.

TiO2 has three main crystal phases: anatase, rutile, and brookite. While anatase and
rutile exhibit the same tetragonal crystal structures, brookite has an orthorhombic crystal
structure. These three polymorphs have also different Eg values, i.e., 3.2 eV, 3.0 eV, and
3.3 eV for anatase, rutile, and brookite, respectively [30]. Anatase has been generally
considered as the most active phase of the three TiO2 polymorphs for photocatalytic
applications [183,184].

Anatase and rutile TiO2 have shown differences in their respective charge carrier
recombination kinetics [185,186]. Using transient absorption spectroscopy, Sachs et al. [185]
compare the ultrafast charge carrier kinetics for anatase and rutile in dense and nanos-
tructured TiO2 films. They found that bulk rather than surface recombination was the
key determinant of charge carrier lifetime. They also monitored that recombination was
dependent on the crystal phase. Rutile shows faster recombination than anatase, which
is consistent with the doping density (n-type doping due to oxygen vacancies) in rutile
being higher than in anatase. Besides, Wang et al. [187] investigated anatase and rutile
TiO2 with photoluminescence spectroscopy under weak excitation conditions. Anatase
showed a visible emission, while a NIR emission was reported in rutile; however, both
emission spectra exhibited long lifetimes up to milliseconds. They explained that the NIR
luminescence band in rutile TiO2 was due to the recombination of trapped electrons with
free holes. Hence, trap states in TiO2 may play a very important role in the photocatalysis
processes. The depth of trap states in rutile TiO2 is much deeper than that in anatase TiO2,
which has shallowed-trapped electrons in addition to a higher number of free electrons as
shown in Figure 7a,b. On the other hand, Durrant et al. [188] employed transient absorp-
tion spectroscopy (TAS) to investigate the kinetic of photocatalysis in anatase and rutile
TiO2 films. Although rutile exhibited 10 times slower recombination kinetics than anatase,
mesoporous anatase film was around 30 times more efficient than mesoporous rutile film
in the photocatalysis of the “intelligent ink” model system. They found also that in the
presence of alcohols, faster and irreversible hole scavenging was achieved on anatase than
in the case of rutile, resulting in the creation of long-lived electrons (τ ≈ 0.7 s). The authors
explained the lower activity of rutile to the deficiency of rutile holes to drive efficient and
irreversible alcohol oxidation rather than to the differences in recombination kinetics.
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Figure 7. Tapping and recombination of photogenerated charge carriers in anatase (a) and rutile (b), reprinted with
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Choi et al. [189] compared the recombination kinetics in anatase and rutile using time-
resolved diffuse reflectance (TDR) spectroscopy. They demonstrated that during the 355
nm laser excitation, the time-resolved decay at 550 nm was slower in anatase than rutile as
shown in Figure 8a. This results in a longer lifetime of photogenerated charge carriers with
subsequent higher reactive oxygen species generation in anatase. The authors observed also
the generation and the diffusion of OH• from the illuminated TiO2 surface to the solution
bulk using a single-molecule detection method. They found that only anatase generates
mobile OH• radicals, therefore, the photocatalytic oxidation on rutile is limited to adsorbed
species. Schindler and Kunst [190] studied the excess charge carrier kinetics in anatase
and rutile TiO2 powders using the time-resolved microwave conductivity (TRMC) method.
Figure 8b shows the transient change of the reflected microwave power after excitation
by a 20-ns laser pulse at 266 nm. The photoconductivity in anatase decays very slowly
compared to rutile powder. They demonstrated that this signal can be attributed to excess
electrons in the CB because of the n-doping characteristics and the larger electron mobility
compared to the hole mobility. Therefore, the short electron lifetime in rutile could be due
to a higher recombination rate, while in anatase fast trapping of the minority charge carriers
(holes) may take place. This would decrease the availability of holes for recombination and
reduce the recombination probability, leading to a longer lifetime in anatase.
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The development of TiO2 materials has led to mixed-phase titania photocatalysts. One
example is P25-TiO2, which is a mixture of anatase and rutile (75:25). Due to its higher
activity, anatase is conventionally considered to be the active component in P25, with
rutile serving as an electron sink. Some reports showed that such mixed-phase titania has
slower rates of charge carrier recombination, higher photo-efficiencies, and lower energy
light activation [191]. Knorr et al. [186] studied the room-temperature photoluminescence
spectra of nanocrystalline TiO2 in the anatase and rutile phases and mixed-phase films.
They showed that the photoluminescence of anatase results from at least two spatially
isolated trap-state distributions, i.e., trapped electrons and trapped holes, which are,
respectively, about 0.7−1.6 eV and 1.8−2.5 eV below the conduction band edge. The signal
of trapped electrons was largely quenched in P25 and the presence of hole scavengers.
The authors, hence, concluded a bidirectional electron transport between anatase and
rutile phases in P25, with solvents having a strong impact on the competition for electrons
between the two phases.

Additional recombination or trapping in the rutile part decreases the lifetime of
electrons compared to pure anatase, but it would be much longer than in pure rutile due to
the deep trapping of the holes in the anatase part. On the other hand, Hurum et al. [191]
studied the charge separation characteristics of P25 by EPR spectroscopy. They showed, as
presented in Figure 9, that the visible light irradiation of rutile produced charge carriers,
which are stabilized through electron transfer to lower energetic trapping sites in the lattice
of anatase. The authors suggested that the morphology of nanoclusters P25 consists of
small rutile crystallites interwoven with anatase crystallites. The transition points between
these two phases permit a rapid electron transfer from rutile to anatase. Hence, rutile in P25
acts as an antenna to extend the photoactivity into visible wavelengths and the structural
arrangement creates catalytic “hot spots” at the rutile−anatase interface.
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Using the time-resolved microwave conductivity (TRMC) method, Schindler and
Kunst [190] found that the transient photoconductivity in P25 was rather more like the
decay behavior observed in anatase than that in rutile shown in Figure 8b. They expected
that in the mixed powder, fast recombination, such as in rutile for the electron–hole pairs
created in the rutile part. Nevertheless, the deep trapping of holes in the anatase part
would prevent the transfer of holes to the rutile part for the electron–hole pairs created in
the anatase part.
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4.4. Enhancing the Performance of Pristine TiO2

As discussed above, although pristine TiO2 exhibits advantages, some limitations are
also presented. The main drawbacks to using pristine TiO2 as an active photocatalyst are
the lack of visible light activation, the fast recombination of the photogenerated electrons
and holes, the relatively low charge carrier mobility.

Various attempts have been made to improve the capability to exploit visible photons
for the TiO2 photocatalytic process. Doping with transition metal ions is one approach
that has been extensively employed, especially the incorporation of Fe3+ into the TiO2
matrix [164]. This has been proven as a promising method to create additional states in
the bandgap and, consequently, to an increase in the absorption of the visible light [102].
Moreover, it can introduce electron capture centers, resulting in a decrease in electron/hole
recombination centers [164]. Compared to pristine TiO2, Fe-doped TiO2 has enhanced
light-harvesting; however, controversial results on its photocatalytic activity have been
reported [102]. Choi et al. [192] studied the photocatalytic oxidation of chloroform using
TiO2 doped with 21 transition metal ions and discovered that the doping with Fe3+, Mo5+,
Ru3+, Os3+, Re5+, V4+, and Rn3+ cations is beneficial. Moreover, nonmetal doping has
been widely studied, especially with N, C, F, B, and other elements having an atomic
radius similar to that of the O atom. Among them, nitrogen has attracted much attention.
Asahi et al. [193], for example, showed that nitrogen-doped TiO2 exhibits enhanced visible
light absorption and photocatalytic activity. Other strategies are the use of noble metals
(e.g., Pt, Au, Pd, Rh, Ni, Cu, and Ag) as a co-catalyst to decrease the recombination of the
charge carriers and provide additional active sites for H2 evolution [102]. We will focus
in the next sections on the modification of pristine TiO2 with noble-metal co-catalysts,
particularly platinum nanoparticles, due to their higher catalytic performance driving
the reduction reaction of protons [104]; hence, increasing the photocatalytic reforming of
organic compounds.

The energy of the photogenerated electrons in the conduction band for both rutile
(ECB = −0.11 V at pH 0) and anatase (ECB = −0.32 V at pH 0) [145] is sufficient to form H2
by reducing water. However, pristine TiO2 has been reported as an inactive photocatalyst
for H2 production because of the fast recombination of charge carriers and the inability
to reduce protons to H2 due to the higher overpotential for hydrogen evolution reaction
(0.05 V) [194]. Hence, even in the presence of an electron donor, pristine TiO2 has shown
an inability to catalyze the hydrogen evolution reaction [131]. TAS data revealed that the
generated electrons are trapped as blue Ti3+ ions instead of reducing H+ upon the con-
sumption of holes by the electron donor [105,195]. Consequently, it is highly recommended
to modify pristine TiO2 with an appropriate co-catalyst, which can effectively catalyze the
cathodic H2 evolution reaction. One successful strategy is the surface modification with
noble metal nanoparticles, e.g., Pt and Au NPs. Noble-metal-modified TiO2 photocatalysts
have been widely studied in the literature, in which the noble-metal NPs act as Hydrogen
Evolution Reaction (HER) catalysts.

HER on metallic platinum, as an example, induce via the Volmer reaction, in which
H•ads atoms are produced when the accumulated electrons in Pt are transferred to the pro-
ton adsorbed H+

ads and H2Oads, respectively, as described in Equations (7a) and (7b) [196].
The reaction proceeds afterward through two possible pathways, either the Heyrovsky
reaction (Equation (7c)) or the Tafel reaction (Equation (7d)), in which H•ads react with
H+

ads or/and the direct recombination of two H•ads with each other, respectively [155].
Figure 10 illustrates the two-electron transfer reaction that occurs on the metal surface in
acidic solutions. HER on Pt has been shown to exhibit pseudo-first-order kinetics, which
indicates that the rate-determining step of the HER is the Volmer reaction [197]. Rabani
et al. [197] have presented a linear increase in e−TiO2 decay rate while increasing H+ concen-
tration at a given Pt concentration, suggesting that H2 is most likely generated by reduction
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of H+ rather than the reduction of H2O. They have also highlighted that the presence of Pt
is vital for reactions 7a and 7b to occur.

H+ads (Pt) + e−(Pt)→ H•ads (Pt) (7a)

H2Oads(Pt) + e−(Pt)→ H•ads (Pt) + OH- (7b)

H•ads (Pt) + e−(Pt) + H+ads (Pt) + e−(Pt)→ H2(g) (7c)

H•ads (Pt) + H•ads (Pt)→ H2(g) (7d)
Catalysts 2021, 11, x FOR PEER REVIEW 19 of 45 
 

 

 
Figure 10. The possible mechanisms of HER on the catalyst surface in acidic solutions. The (*) refers to the active sites of 
the catalyst, H* refers to the adsorbed H• atom at the active site of the catalyst. Reprinted with permission from reference 
[198]. 

H+ads (Pt) + e−(Pt) → H•ads (Pt) (7a)

H2Oads(Pt) + e−(Pt) → H•ads (Pt) + OH- (7b)

H•ads (Pt) + e−(Pt) + H+ads (Pt) + e−(Pt) → H2(g) (7c)

H•ads (Pt) + H•ads (Pt) → H2(g) (7d)

It has been widely accepted that enhancement of the activity through the modifica-
tion of TiO2 with noble-metal NPS is due to a better charge separation according to the 
Schottky barrier model. Noble-metal NPs have higher Fermi level energy, i.e., 5.65 eV and 
5.10 eV for Pt and Au, respectively [199] compared to that of TiO2, i.e., 4.2 eV [200]. There-
fore, photogenerated electrons can transfer from TiO2 to the metal NPs through the inter-
face until a thermodynamic equilibrium is achieved [110] as shown in Figure 11a–d. 
Schottky barrier B is defined as the barrier against the flow of electrons from the metal 
to the n-type semiconductor, i.e., TiO2 [201]. During the irradiation, this thermodynamic 
equilibrium will be unsettled, permitting the photogenerated electrons to continuously 
flow from the CB of TiO2 to the metal NPs [110,202]. It has been generally recognized that 
such a Schottky barrier smooths electron trapping by the metal, providing better charge 
separation. The trapped electrons have, therefore, a longer lifetime to promote the reduc-
tion reactions [203,204]. Correlations between photocatalytic H2 evolution rates and metal 
work functions have been thoroughly established [105,205,206]. However, EPR experi-
ments for irradiated Pt/TiO2 revealed simultaneously signals for the Ti3+ centers, which 
confirms that the photogenerated electrons are not transferred completely to the Pt NPs, 
rather a certain number of them are trapped as Ti3+ ions in TiO2 [105,110,181]. 

Figure 10. The possible mechanisms of HER on the catalyst surface in acidic solutions. The (*) refers to the active sites of the
catalyst, H* refers to the adsorbed H• atom at the active site of the catalyst. Reprinted with permission from reference [198].

It has been widely accepted that enhancement of the activity through the modifica-
tion of TiO2 with noble-metal NPS is due to a better charge separation according to the
Schottky barrier model. Noble-metal NPs have higher Fermi level energy, i.e., 5.65 eV
and 5.10 eV for Pt and Au, respectively [199] compared to that of TiO2, i.e., 4.2 eV [200].
Therefore, photogenerated electrons can transfer from TiO2 to the metal NPs through the
interface until a thermodynamic equilibrium is achieved [110] as shown in Figure 11a–d.
Schottky barrier ΦB is defined as the barrier against the flow of electrons from the metal
to the n-type semiconductor, i.e., TiO2 [201]. During the irradiation, this thermodynamic
equilibrium will be unsettled, permitting the photogenerated electrons to continuously
flow from the CB of TiO2 to the metal NPs [110,202]. It has been generally recognized
that such a Schottky barrier smooths electron trapping by the metal, providing better
charge separation. The trapped electrons have, therefore, a longer lifetime to promote
the reduction reactions [203,204]. Correlations between photocatalytic H2 evolution rates
and metal work functions have been thoroughly established [105,205,206]. However, EPR
experiments for irradiated Pt/TiO2 revealed simultaneously signals for the Ti3+ centers,
which confirms that the photogenerated electrons are not transferred completely to the Pt
NPs, rather a certain number of them are trapped as Ti3+ ions in TiO2 [105,110,181].

Scavenging the photogenerated electrons from TiO2 by the noble-metal NPs is essential
but is not the only factor that enhances the HER. According to the Sabatier principle [207],
an ideal catalyst for (HER) is characterized by its optimal binding energy with adsorbed
atomic hydrogen (H•ads). This binding energy should be neither too strong nor too weak.
On the one hand, the active sites for the HER reaction can be blocked and the desorption of
H2 becomes the rate-limiting reaction in the case of a strong binding. On the other hand,
proton reduction is rate-limiting in the case of weak binding energy with H•ads [208]. Con-
sequently, a volcano-type dependence between HER rates and metal-H•ads bond strength
has been proposed [209], in which platinum provides the best activity to drive the HER
as shown in Figure 12. In conclusion, Pt/TiO2 has been demonstrated to exhibit the
highest photocatalytic activity towards H2 production compared to other metal-loaded
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TiO2 [105,155,210], such as Au/TiO2. This has been explained by the highest work func-
tion of Pt that enhances electrons “sinking” properties, the lowest overpotential for H2
formation, and the optimal binding energy adsorbing atomic hydrogen.
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4.5. Effect of the Loading Method on H2 Production

As discussed in Section 4.4, surface decoration of metal (e.g., Au, Ag, Cu, and es-
pecially Pt) on TiO2 nanoparticles is an outstanding technique to revamp the electronic
properties of TiO2 without affecting its original crystallinity, thus, enhance the photocat-
alytic activity, and enrich the H2 production efficiency [212,213]. Different co-catalyst
loading methods “techniques” have been successfully applied [38,214,215]; however, the
structure and the properties of the co-catalyst were found to play a critical role in achieving
superior photocatalytic activity [216]. It has been reported that many structural factors
affect the activity of the platinized TiO2, such as the size of Pt NPs [213,217,218], their
dispersion of Pt NPs [219,220], the interaction between the metal and the support [221–223],
and the chemical state of Pt deposits [220,224]. Nevertheless, all of these factors can be
optimized by using proper preparation methods [210,214,220,225,226].

The most commonly adopted techniques for the loading of Pt nanoparticles on the sur-
face of TiO2 include photodeposition [104,105,131,167,210,227], deposition–precipitation [210],
chemical reduction [212,228], impregnation [227], electrodeposition [229], and physical
mixing [210]. Some of these methods require adding a reducing agent, such as NaBH4,
to reduce the metal ions to metal particles. However, the weak adhering of the metal
nanoparticles to the semiconductor surface, the larger size of the metal nanoparticles, and
the nucleation of isolated metal nanoparticles in the electrolyte are the main problems
associated with such methods. Such a poor interaction between the metal nanoparticles
and the semiconductor surface negatively affects the electron transfer to the metal, in-
creasing the electron/hole recombination rate [212,230,231]. On the other hand, some
techniques need elevated temperatures or an applied bias, and a longer preparation pe-
riod [128,210,214,232,233].

Photocatalytic hydrogen production over Eosin Y-sensitized Pt-loaded TiO2–ZrO2
mixed oxide photocatalysts was investigated under visible light irradiation by Sreethawong
and Yoshikawab [234]. The authors prepared the platinized material by using two different
methods, i.e., single-step sol-gel (SSSG) and photochemical deposition (PCD). At the
optimum loading ratio (0.5 wt.%) of Pt, the authors found that the platinized photocatalyst
prepared by the PCD method exhibited a higher H2 production rate of 2.37 mL/h g
comparing to 1.42 mL/h g to that prepared by the SSSG method. They attributed the
difference in the photocatalytic activity to the different oxidation states of Pt in both
samples. The loaded Pt nanoparticles synthesized by the SSSG method were partly in the
oxide form, whereas those prepared via the PCD method consisted of particles in their
metallic form having better dispersion on the surface of the semiconductor. Accordingly,
the latter provided an efficient charge carrier separation at the interfacial contact between
the photochemical-deposited Pt nanoparticles and the TiO2–ZrO2.

Alternatively, the photodeposition method is the most adopted and recommended
technique among other loading methods to prepare Pt/TiO2 [128,214]. The interest of the
scientific community with the photodeposition method has been greatly expanded since
1978 when Kraeutler and Bernhard employed this technique to synthesize well-dispersed
Pt nanoparticles on TiO2 to use this composite in the photocatalytic decomposition of
acetic acid to methane [214,235]. Many beneficial features can be controlled during the
photodeposition method such as well-defining of co-catalyst nanoparticles, preparing
facet-engineered nanoparticles, geometrical distributing of nanoparticles, controlling the
size and the oxidation state of the deposited nanoparticles. During the photodeposition
process, the metal ions are reduced by the conduction band photogenerated electrons,
which leads to a uniform dispersion of the metal nanoparticles on the photocatalyst surface
and avoids the self-nucleation of metal particles in the solution [236].

Several structural properties contribute to the photoactivity of the loaded photocata-
lyst, such as aggregation, Pt-assisted network formation, and Pt dispersion. Wang et al. [222]
studied a 1 wt.% platinization of colloidal TiO2 by two methods, i.e., the photodeposition
and the mixing with colloidal Pt prepared by chemical reduction of Pt4+. The authors
found that during the photocatalytic oxidation of methanol, the quantum yields of HCHO
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formation increased by 70% and 50%, for the photocatalyst prepared by photodeposition
and mixing, respectively. Additionally, they showed that, in a deoxygenated system, the
platinized-TiO2 prepared by photodeposition method was more efficient for photocatalytic
H2 and HCHO formation than the other platinized sample prepared by physical mixing
during the reforming of CH3OH. The authors explained that Pt clusters on the TiO2 surface
were formed via the photodeposition process, while, Pt particles were surrounded by TiO2
particles by mixing colloidal Pt with colloidal TiO2, as shown in Figure 13. Therefore, the
better activity of the former is attributed to the better dispersity and the stronger contact
between the Pt particles with the TiO2 surface.
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Moreover, the deposition of Pt on the surface of TiO2 enhances the optical property
of the Pt-TiO2. Chen et al. [237] reported that the deposition of Pt on TiO2 surface via the
photodeposition method promoted the optical absorption property of the prepared material
to the visible region of light. The authors attributed this enhancement to the formation of
Ti+3 due to the reduction of the Ti+4 during the photodeposition of the Pt. Similarly, F. Li
and X. Li [224] found that the deposition of Pt nanoparticles on the TiO2 surface enhanced
the photocatalytic activity due to the formation of a defect energy level near the valence
band of TiO2, as a result of the TiIII formation in the lattice. The authors attributed the
formation of TiIII to the interaction between Pt and TiO2 during the photoreduction process.

Although many reports have shown that the photodeposition technique produces a
high active photocatalyst system [210,212], several reports of the metal/semiconductor
prepared with other techniques have claimed the contrary [213,225,238]; thus, no general
conclusion could be deduced. Apparently, the shape and the nature of Pt NPs besides
their interaction with the support are expected to be different by the various platinization
methods, which results in diverse photocatalytic behaviors.

5. Photocatalytic Reforming of Aromatic Compounds

Aromatic compounds such as phenols, dyes, and PAHs are important industrial
chemicals due to their wide usage. Therefore, the development of novel and simple
processes is desired to remove these compounds from the environment, according to the
viewpoint of “green chemistry” [239]. Several investigations of photooxidation of such
pollutants have been carried out by using TiO2 and Pt/TiO2 photocatalysts in the presence
of molecular oxygen [113,117,124,240–246].

Due to the low efficiency of overall photocatalytic water splitting, the photoreforming
of the organic compounds has shown significantly higher rates and longer-term stability of
H2 production. Therefore, a huge number of photocatalytic reforming studies have been
reported. However, simple organic compounds like methanol (the most studied), ethanol,
formaldehyde, formic acid, etc., have been mostly used as model pollutants. In this section,
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we will focus on the reported investigations that using aromatic compounds like benzene,
phenols, dyes, and PAHs as electron donors (hole scavengers), especially over modified
TiO2 materials for the same goal.

As mentioned in Section 4.2, surface-modified TiO2 and other semiconductors, such
as Cu2O, WO3, have been widely used as photocatalysts for the photooxidation and the
reforming of the hazardous organic pollutants found in wastewater [38,105,130,247]. Upon
the total mineralization, the photoreforming process is demonstrated by the following
stoichiometric reaction (Equation (8)) [248].

CxHyOz + (2x− z)H2O → xCO2 + (2x− z + y/2)H2 (8)

5.1. Monoaromatic and Phenolic-Based Compounds

Benzene is considered a toxic and carcinogenic pollutant. It naturally exists in the
environment and is artificially manmade through a wide range of products, such as plastics,
paints, mucilage, rubber, and gasoline. It was confirmed that exposure to benzene for a
high level or long-time results in several ailments, such as drowsiness, nausea, headache,
lightheadedness, dizziness, and cancers. Therefore, it was classified in Category A as a
carcinogenic compound by the Environmental Protection Agency.

Hashimoto et al. [247] investigated the photocatalytic H2 production from different
solutions of aliphatic and aromatic compounds using Pt-TiO2 photocatalyst. Assisted by
light energy and in the presence of the photocatalyst, both types of hydrocarbons produced
H2 by reacting with water at room temperature. The maximum H2 formation was obtained
at a 30:1 ratio between the water/benzene mixtures while increasing the benzene ratio
decreased the H2 formation. The authors have claimed that water is the main source of H2
since no H2 was detected upon the use of pure benzene in the presence of the Pt-TiO2 under
irradiation. Comparing to the water–alcohol mixture, the authors observed that H2 and
CO2 are produced at an early stage of irradiation, and the aromatic hydrocarbons produced
a higher CO2 amount than their corresponding derivatives, such as phenol, hydroquinone,
and catechol. Therefore, they suggested a higher reactivity of the aromatic hydrocarbons
comparing to the hydroxylated aromatic compounds. The authors, hence, proposed that
the direct oxidation of benzene by photogenerated holes is the main reaction pathway,
followed by the ring-opening producing the corresponding organic acid that decomposes
via photo–Kolb reaction (Path C in Scheme 2). The authors have excluded phenol and
catechol as the main intermediates in this path since benzene swiftly oxidized to muconic
acid, whose reactivity is larger than that of benzene itself.

Many other investigations have documented the H2 formation during the photocat-
alytic transformation of benzene; however, they have mainly discussed the H2 formation as
a secondary product. These reports focused on other purposes, such as the mechanistic stud-
ies of the photocatalytic reaction [12,13,249–251] and the chemical synthesis [162,250,252],
rather than the transformation of the aromatic water pollutants into fuels.

On the other hand, phenolic compounds—as we mentioned previously—are one of
the most abundant aromatic pollutants in wastewater. Few research groups reported the
transformation of these kinds of pollutants into fuels. In 2008, Choi et al. [253] reported the
photocatalytic degradation of 4-chlorophenol and bisphenol A on the surface of bare TiO2
(P25), F-TiO2, Pt/TiO2, and F-TiO2/Pt under anoxic conditions. The authors found that
F-TiO2/Pt exhibited the highest photocatalytic activity towards the conversion of these
compounds compared to the other materials. They attributed this activity to the unique
synergic effect of two different surface species, i.e., fluoride and platinum, on the photo-
induced charge transfer process. Such an effect inhibits the charge recombination on F-
TiO2/Pt as shown in Scheme 3. However, the mineralization of these aromatic compounds
could not be achieved for all photocatalysts, since the total organic carbon content in the
suspensions remained unaltered during the irradiation. Nevertheless, the authors did not
discuss the possibility of molecular hydrogen formation in anoxic conditions and they
ignored it in their reaction mechanism.
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Two years after, the same research group presented similar results, taking into ac-
count the simultaneous production of H2 during the photooxidation of such organic
compounds [248]. Interestingly, the authors found that the % photonic efficiencies for H2
formation during the photooxidation of the simple organic compounds, i.e., dichloroacetic
acid and N-nitrosodimethylamine were found 0.122 and 0.139, respectively over Pt/TiO2.
These values were higher than those reported for F-TiO2/Pt, i.e., 0.046 and 0.1, respec-
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tively. In contrast, using other aromatic compounds, i.e., hydroquinone, 4-chlorophenol,
4-chlorobenzoic acid, and bisphenol, higher % photonic efficiencies for H2 were achieved
over F-TiO2/Pt (0.094, 0.116, 0.249, 0.334, respectively) than those over Pt/TiO2 (0.052, 0.003,
0.002, 0.044, respectively). The authors reported, additionally, a complete total organic
carbons (TOC) removal in the 4-chlorophenol/F-TiO2/Pt suspension after 8-h irradiation.

It is well known that the adsorption of the photodegraded organic intermediates to
the photocatalyst surface and the insufficient management of the photo-generated charge
carrier inhibits the H2 evolution reaction and/or the photocatalytic degradation of the
organic pollutants in the dual-functional photocatalysis process. [38,104,254]. To this end,
Kim et al. [11] studied the enhancement of the dual-functional photocatalysis process
by modifying titania photocatalysts with fluoride or phosphate beside the deposition of
different metals, i.e., Pt, Pd, Au, Ag, Cu, or Ni. The authors found that the dual-function
photocatalysis worked only when both the anion and the metal coexisted on the surface
of TiO2, whereas TiO2 modified with a single surface component such as F-TiO2, P-TiO2,
or M/TiO2 was inactive under the same experimental condition (Figure 14a). Almost
similar dual-functional photocatalysis activities were reported for F-TiO2/Pt and P-TiO2/Pt;
however, the synergistic effect greatly depended on the kind of deposited metal and the pH
(Figure 14a,b). F-TiO2/Pt was found to be active in the acidic pH region since its activity
gradually decreased with increasing pH. In contrast, P-TiO2/Pt exhibited a consistent
activity over a wide range of pH, due to the strong chemical bonding of phosphates on
TiO2. Therefore, they suggested that P-TiO2/Pt could be more appropriate for practical
dual-functional applications (Figure 14c). The authors claimed that the modification of the
TiO2 surface with fluorides or phosphates with the deposition of metal acts synergistically
to reduce the charge recombination and enhance the interfacial electron transfer, which
enhances the photocatalytic activity.
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M/TiO2 and F-TiO2/M (M = Pt, Pd, Au, Ag, Cu, and Ni), (b) Production of H2 in the suspension
of bare TiO2, F-TiO2, P-TiO2, Pt/TiO2, F-TiO2/Pt, and P-TiO2/Pt with 4-CP, and (c) effect of pH on
the production of H2. Adapted with permission from reference [11]. Copyright 2012 Royal Society
of Chemistry.

Furthermore, the enhancement of the dual-functional photocatalytic process toward
the simultaneous H2 formation and 4-chlorophenol degradation was achieved by designing
a ternary components photocatalyst [156]. Cr2O3/Rh/SrTiO3 was prepared by covering the
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Rh nanoparticles on the surface of SrTiO3 with a thin barrier layer of Cr2O3 to selectively
control and maximize the dual-functional photocatalytic activity. Under the same exper-
imental condition, the as-prepared Cr2O3/Rh/SrTiO3 photocatalyst exhibited a higher
activity towards H2 production and 4-chlorophenol degradation than that of F-TiO2/Pt and
was unaffected by the pH change from the acidic medium to neutral medium (Figure 15).
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According to the authors, the better photocatalytic behavior of Cr2O3/Rh/SrTiO3 can
be related to two features. Firstly, the Cr2O3 barrier layer selectively allows the conduction
band electrons to be consumed by protons, hindering their transfer to O2 or other electron
acceptors. Secondly, the valence band holes are utilized to oxidize both the 4-chlorophenol
and H2O (to O2), since the in-situ generated O2 simultaneously and immediately consumed
in the oxidation reaction to help in the mineralization of the organic pollutants, as shown
in Scheme 4.
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Scheme 4. Schematic illustrations of photocatalytic reaction mechanisms occurring on the surface of
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Cho et al. [255] modified the TiO2 surface by adding the graphene oxide (GO) as a
ternary component besides the modification with F and Pt to enhance the dual-functional
photocatalytic activity. Pt/GO/TiO2-F showed 1.7 and 3.8 times higher H2 production
than Pt/TiO2-F and Pt/GO/TiO2, respectively, during the photocatalytic degradation
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of 4-chlorophenol. Since the GO attracts electrons, the interfacial electron transfer was
facilitated by the direct contact between GO and the TiO2 surface, while holes are kept
in TiO2. Such an electron transfer to GO reduces the possibility of recombination of
photogenerated charge carriers and extends the lifetime of charge carriers. Moreover, as the
work function of Pt is higher than that of GO, i.e., 5.64 and 4.42 eV, respectively, the transfer
of photogenerated electrons from GO to Pt is energetically favorable, which enhances the
H2 production. On the other hand, F ions replace the surface hydroxyl groups on the
TiO2 surface, which act as the main hole trap sites. This in turn reduces hole-trapping
efficiency and hinders the chemisorption of organic substrates, thus, prevents the direct
attack of the organic molecules by the trapped hole. Since the electrons are trapped by
Pt, the preferred path of holes is to react with H2O to generate unbound OH• radicals
that can diffuse out from the surface and react with the organic molecules in the medium.
The authors explained that such a ternary hybrid system retards the recombination of the
charge carrier and enhances both the H2 production and 4-chlorophenol degradation, as
shown in Scheme 5.
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Recently, many efforts have been made to use visible-light active dual-functional
photocatalysts. For example, the two-dimensional (2D) black phosphorous/2D carbon
nitride (2D BP/2D C3N4) was synthesized and employed for efficient H2 evolution with
the simultaneous photodegradation of bisphenol A pollutant (BPA) [256]. The H2 evolution
rate and the BPA removal over 2D C3N4 nanosheets were found to be ~45 µmol·h−1·g−1

and 43%, respectively. Upon the introduction of 2D BP, both the H2 production rate and
the simultaneous BPA removal were improved. The optimum ratio of 5% 2D BP exhibits
an H2 evolution rate of 259.04 µmol·h−1·g−1 and BPA removal rate of 88% with an external
quantum efficiency of 0.56% at 420 nm (Figure 16a). The authors attributed the high
efficiency of this material to the intimate electronic interaction between 2D BP and 2D
C3N4, besides the excellent charge mobility between the two composites.
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Another effort was exerted towards the development of new materials possessing
optical properties in the visible light region. Jiang et al. [257] prepared a photocatalyst
consists of carbon quantum dots/CdS quantum dots/g-C3N4 (CDs/CdS/GCN) photocata-
lyst composite. The photocatalytic activity of this material under visible-light illumination
was evaluated for concurrent H2 production and the decomposition of typical wastewater
pollutants like p-chlorophenol, bisphenol A, and tetracycline. The 3%CDs/10%CdS/GCN
photocatalyst exhibited the best photocatalytic efficiency under the visible-light irradiation
for H2 evolution from water splitting in an aqueous solution containing organic pollutants
(Figure 16b). The addition of p-chlorophenol decreased the photocatalytic H2 evolution rate
compared with the pure water system, due to the consumption of some photogenerated
electrons in the degradation of p-chlorophenol. Although the photocatalytic degradation
rate of p-chlorophenol was higher than those of bisphenol A and tetracycline, the H2
evolution rate increased with the addition of bisphenol A or tetracycline. The authors have
explained such a result by the consumption of all photogenerated electrons to split water
for H2 production.

On the other hand, some reports have shown the inability to use phenol as a sacrificial
reagent in the dual functional photocatalytic processes. Mogyorósi et al. [258] investigated
the photocatalytic H2 production and the decomposition of various organics using 1% Pt-,
Au-, and Ag-deposited on the surface of Degussa P25 photocatalysts. The photocatalytic
decomposition of oxalic acid and formic acid was increased upon the deposition of noble
metals compared to that of the bare photocatalyst. However, in phenol containing system,
the authors reported a decrease in the decomposition activity, indicating that the noble
metals block the active sites on the surface of the photocatalyst. On the other hand, they
practically reported no H2 production over the bare and the modified P25 in the presence
of phenol as a sacrificial reagent. While a very high quantum yield for H2 production over
Pt-TiO2 photocatalyst was reported in the presence of oxalic and formic acids. They have
concluded that O2 was a requirement for the photooxidation of phenol in presence of any
photocatalysts since no decomposition was detected in its absence. Hence, the inhibition of
phenol photooxidation in anoxic conditions negatively affects the ability of H2 production.

5.2. Dyes and Polyaromatic-Based Pollutants

A wide variety of photocatalysts was designed to achieve the goal of the dual-
functional photocatalysis technology; simultaneous H2 production and wastewater pu-
rification by the degradation of the persistent dyes [38,39,189,259–262]. The production of
hydrogen with a simultaneous degradation of azo dye solution (commercial name Acid
Orange 7; AO7) using the well-known photocatalyst Pt/TiO2 suspensions was examined
by Patsoura [261] under UV-vis light. The authors have investigated the effect of the dye
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concentration, the pH, and the temperature on the H2 production rate. Besides, the effect of
the Pt loading ratio on the H2 formation rate was thermodynamically investigated through
the dynamic of the charge carrier during the reaction. In the absence of the Azo-dye and
after the deposition of Pt (0.5 wt.%) on the TiO2 surface, the H2 production rate increased
to a maximum during the irradiation before dropping to a very low steady-state rate value
comparable to those obtained over bare TiO2. Although, it is well known that bare TiO2
is inactive for the H2 production due to the driving force for this reaction is small, and
the presence of a large overpotential for the H2 evolution [263], the authors attributed
such activity to the presence of (i) metal or organic impurities in the semiconductor; (ii)
partially reduced titania species; (iii) small size semiconductor particles that exhibit a
higher efficiency in photocatalytic reactions. The authors also reported an improvement
in the H2 formation during the photo-induced water splitting reaction over Pt/TiO2 by
increasing the pH and the temperature. Interestingly, the presence of a small quantity
of Azo dye in the reaction medium significantly enhanced the H2 formation rate, which
depends on dye concentration, solution pH, and to a lesser extent to the solution tempera-
ture. They found that using a higher dye concentration resulted in increasing H2 formation
over a longer reaction period. However, afterward, the formation rate was decreased to a
steady-state value comparable to that obtained in the absence of the azo dye. The authors
have attributed this decrease to the complete mineralization of the AO7 by-products in the
reaction solution, due to their oxidation by consuming the photogenerated oxygen from
the surface of the photocatalyst.

In the same study, another two azo dyes, namely Basic Blue 41 and Basic Red 46
have been tested at a neutral pH solution to ascertain that the use of a dye is generally
beneficial for the rate of H2 production. Similar behavior to the addition of AO7 was
observed for the other azo dyes. The H2 formation rate increased during the first few
hours of irradiation and then progressively dropped to steady-state values similar to those
obtained for pure water.

The authors have also highlighted that the adsorption of the reaction intermediates on
Pt cannot be effectively removed under the experiment conditions, which leads to retarding
the H2 evolution. This behavior had been observed in many similar photocatalytic systems
dealing with the TiO2 and aromatic compounds [104,167,247,250].

On the other hand, increasing pH from 4 to 10 resulted in a significant increase in the
maximum formation rate from 0.28 to 0.67 µmol/min, which was related to the enhanced
kinetics of dye degradation with increasing the solution pH. According to these authors, this
enhancement indicating that the rate of H2 production is limited by the rate of consumption
of photogenerated O2. Therefore, they conclude that the azo dye acts as a sacrificial agent
that rapidly remove the photogenerated holes and consume the photogenerated oxygen.
This suppresses electron-hole and O2-H2 recombination, enhancing the H2 production
until complete degradation of the dye to CO2 and inorganic ions.

The modification of the TiO2 in a way that increases the adsorption of the organic
molecules on its surface is considered one of the methods that enhance the photocat-
alytic activity since the direct hole transfer to the organic molecules is dominant [264,265].
Bifunctional TiO2 photocatalysts have been developed by Kim et al. [266] through the
modification of the surface of TiO2 with two different components, platinum, and Nafion
(Pt/TiO2/Nf). The simultaneous H2 production and rhodamine B (RhB) degradation was
successfully achieved using Pt/TiO2/Nf under visible light (λ > 420 nm). Pt/TiO2/Nf
exhibited high activity for H2 production in the presence of RhB as a photosensitizer and
organic dye pollutant, besides EDTA as an electron donor. However, the modification with
only one component, i.e., Pt or Nf, resulted in a negligible activity for H2 production under
the same experimental conditions. According to the authors, the negative charge of the
Nafion layer improves the adsorption of cationic RhB and pulls protons to the surface of
TiO2 through electrostatic attraction, enhancing the RhB photooxidation. Simultaneously,
these protons are reduced to H2 on the deposited Pt that acts as an electron sink and a
temporary electron reservoir for the reduction half-reaction. The authors found that RhB
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was not degraded in the absence of EDTA, which is involved in the reaction mechanism
by converting the RhB to N-deethylation. In this dual-functional photocatalytic system, a
20 µM (0.6 µmol) of RhB approximately produced 70 µmol of H2, while the RhB and its
intermediates were completely removed over 12 h period.

Polycyclic aromatic hydrocarbons (PAHs) are a kind of semi-volatile persistent aro-
matic pollutants [267]. These compounds are frequently detected in different types
of wastewater [58,267]. As for many other pollutants, advanced oxidative processes
based on photocatalysis have often been reported for the removal of PAHs [268,269].
Although several studies have explored their photocatalytic degradation in anoxic con-
ditions [268,270,271]; however, very limited reports on the remediation of PAHs with
simultaneous H2 production had been documented in the literature [104,167]. On the
other hand, several reports on the simplest aromatic compound benzene have proved its
ability to act as a sacrificial electron donor (hole scavenger) to photo-catalyze molecular
hydrogen [247,250,251]. Bahnemann’s research group has considered this shortage in
the literature and spotted the light on employing these compounds as sacrificial electron
donors in the dual-functional photocatalysis system [104,167,272].

The hydrogen production with the simultaneous degradation of the simplest PAH
compounds naphthalene based on Pt/TiO2 has been investigated by the Bahnemann
research group [167]. In this study, two different commercial TiO2 photocatalysts, Aeroxide
P25 (ATiO2) and Sachtleben Hombikat UV100 (HTiO2) were loaded with different fractional
ratios of Pt nanoparticles using the photodeposition method. The aim was to evaluate
the role of the loaded Pt on hydrogen production and the simultaneous degradation of
naphthalene. The 0.5 wt.% Pt was found to be the optimum loading ratio on the surface of
HTiO2, which increased the conversion of naphthalene from 71% for bare HTiO2 to 82%
and produces 6 µmol of H2 (Figure 17). However, the authors found that using a higher Pt
content than the optimal platinization ratio inhibited both processes, the H2 formation, and
naphthalene photooxidation. On the other hand, they claimed that loading ATiO2 with the
Pt nanoparticles regardless of the platinization ratio decreased naphthalene conversion,
while no dependency between the Pt ratio and the H2 formation rate was found since all
OF the platinized ATiO2 materials showed a similar H2 formation of around 3 µmol.
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Based on the EPR technique, the authors concluded that the Pt NPs on ATiO2 acted
as recombination centers for the photogenerated charge carrier. They have additionally
related the decreases of H2 formation rate and naphthalene conversion during the photo-
catalytic process to the deactivation of the photocatalyst due to adsorption of the formed
intermediates on the surface of the photocatalyst. Interestingly, the authors demonstrated
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that the reforming of PAHs over the Pt-HTiO2 exhibits higher photonic efficiencies than
that of their corresponding hydroxylated compounds, such as 1 and 2-naphthols.

In another study, the effect of the co-catalyst loading methods on the physicochem-
ical properties of the dual-functional photocatalyst was studied by the same research
group [272]. Anatase TiO2 (Sachtleben Hombikat UV100) was loaded with Pt nanoparticles
using two alternative methods: photodeposition by reduction of PtCl62− (PtPD-TiO2) and
physical mixing of TiO2 with Pt nanoparticles synthesized by laser ablation (PtLA-TiO2).
Both as-prepared materials were fully characterized, and their photocatalytic activities were
evaluated for the photoreforming of naphthalene and methanol. Over both photocatalysts,
the authors reported a huge difference in H2 formation between the two-electron donors,
which can be related to the different nature of the organic compounds. Methanol reacts
swiftly with the photogenerated holes, while the reaction of naphthalene involved multi-
complicated steps. On the other hand, PtPD-TiO2 exhibited better photocatalytic activity
toward naphthalene oxidation and H2 formation compared to PtLA-TiO2. Based on the
transient absorption spectroscopy and the electron paramagnetic spectroscopy techniques,
the higher activity of PtPD-TiO2 was related to the better charge carrier transfer between
the TiO2 and the loaded Pt nanoparticles. The authors explained these results by the better
dispersion of Pt nanoparticles and their strong interaction with the surface of TiO2.

The mechanism of the dual-functional photocatalysis process for molecular hydrogen
formation concurrent with naphthalene degradation over Pt-TiO2 (Hombikat UV100) has
been investigated [104]. The authors reported photonic efficiencies of 0.33% and 0.970% for
naphthalene conversion and H2 formation, respectively, under simulated sunlight. After
4 h irradiation, the authors were able to determine the formed organic by-products in
the system by the mean of gas chromatography - mass spectrometry, high-performance
liquid chromatography, and high pressure ion chromatography techniques. Moreover,
through the spin-trapping experiments, they proved that only the photogenerated holes
play the main role in the photooxidation of naphthalene, while, the isotopic labeling
analyses showed that the evolved H2 originated mainly from water. According to these
results, the authors suggested the following mechanism for hydroxylation of naphthalene
(Equations (9)–(15)), while the total mineralization mechanism was shown in Scheme 6.

TiO2 → n
(
e− + h+)TiO2 (9)
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6. Conclusions

The increase in the quantity and quality of pollutants associated with industrial
progress and population growth makes it necessary to match this increase with efficient
and sustainable ways to treat it; hence, the urge to develop new materials or to modify
and/or enhance the performance of some existing materials. There is no doubt that
abundance and low cost are advantages that every semiconductor must meet for their
application in large-scale photocatalytic systems. These two properties turned TiO2 into
an attractive material in this field—attractive enough to devote large scientific efforts to
overcome its main limitations: fast charge carrier recombination rates and a relatively large
bandgap (3.2 eV), so that only UV radiation can activate it. However, the adopted strategies
to improve TiO2 performance and make it more appealing for large-scale applications—
some of these strategies are discussed in this review, and are, to a large extent working,
and seem promising. However, miniaturizing or synthesizing in the nanoscale is not the
only way to achieve high efficiency. The fast recombination of the photogenerated charges
could be significantly reduced by the loading of co-catalyst, which is normally noble metal
nanoparticles. The high cost of the noble metals and their limited availability make them a
not idealistic choice. One more time, cost-effectiveness comes into play but this time as
a limiting factor. The search for co-catalysts that demonstrate high efficiency combined
with cost efficiency is a challenging issue in photocatalysis. The wide scale of chemical
and physical properties of both pollutants and semiconductors could anticipate the use
of oxide-oxide or metal-oxide hetero nanostructures to create new properties that achieve
higher performance and enhanced ability to remove, reform, or degrade pollutants. Not
to mention that heterostructures could demonstrate the same function as a catalyst and
co-catalyst without the resolve to high-cost noble metals, which could be a working strategy
with enormous numbers of materials. Finally, despite a large amount of photocatalytic
reforming studies, there is a huge deficiency in the investigation of the photocatalytic
reforming of aromatic-based pollutants, especially the PAHs. Such pollutants have shown
the ability for photocatalytic oxidation in the oxygen atmosphere; however, few reports
have been published that deal with the H2 production based on their photoreforming.
Hence, this research line can be a rich area for further future investigation.
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