38 research outputs found

    Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - liquid biopsies for monitoring complications of pregnancy

    Get PDF
    Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (QdotÂź) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyteℱ) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications.Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W. Mol, Gregory E. Rice, Carlos Salomo

    Nutritional therapy and infectious diseases: a two-edged sword

    Get PDF
    The benefits and risks of nutritional therapies in the prevention and management of infectious diseases in the developed world are reviewed. There is strong evidence that early enteral feeding of patients prevents infections in a variety of traumatic and surgical illnesses. There is, however, little support for similar early feeding in medical illnesses. Parenteral nutrition increases the risk of infection when compared to enteral feeding or delayed nutrition. The use of gastric feedings appears to be as safe and effective as small bowel feedings. Dietary supplementation with glutamine appears to lower the risk of post-surgical infections and the ingestion of cranberry products has value in preventing urinary tract infections in women

    Classification and function of small open reading frames

    Get PDF
    Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights

    Search for dark photons produced in 13 TeV pppp collisions

    Get PDF
    Searches are performed for both promptlike and long-lived dark photons, A 0 , produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A 0 → ÎŒ ĂŸ ÎŒ − decays and a data sample corresponding to an integrated luminosity of 1 . 6 fb − 1 collected with the LHCb detector. The promptlike A 0 search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A 0 search is restricted to the low-mass region 214 <m Ă° A 0 Þ < 350 MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the Îł – A 0 kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10 . 6 <m Ă° A 0 Þ < 70 GeV, and are comparable to the best existing limits for m Ă° A 0 Þ < 0 . 5 GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature

    Nuclear gene proximity and protein interactions shape transcript covariations in mammalian single cells.

    No full text
    Single-cell RNA sequencing studies on gene co-expression patterns could yield important regulatory and functional insights, but have so far been limited by the confounding effects of differentiation and cell cycle. We apply a tailored experimental design that eliminates these confounders, and report thousands of intrinsically covarying gene pairs in mouse embryonic stem cells. These covariations form a network with biological properties, outlining known and novel gene interactions. We provide the first evidence that miRNAs naturally induce transcriptome-wide covariations and compare the relative importance of nuclear organization, transcriptional and post-transcriptional regulation in defining covariations. We find that nuclear organization has the greatest impact, and that genes encoding for physically interacting proteins specifically tend to covary, suggesting importance for protein complex formation. Our results lend support to the concept of post-transcriptional RNA operons, but we further present evidence that nuclear proximity of genes may provide substantial functional regulation in mammalian single cells
    corecore