25 research outputs found
Interferons Regulate the Phenotype of Wild-type and Mutant Herpes Simplex Viruses In Vivo
Mechanisms responsible for neuroattenuation of herpes simplex virus (HSV) have been defined previously by studies of mutant viruses in cultured cells. The hypothesis that null mutations in host genes can override the attenuated phenotype of null mutations in certain viral genes was tested. Mutants such as those in infected cell protein (ICP) 0, thymidine kinase, ribonucleotide reductase, virion host shutoff, and ICP34.5 are reduced in their capacity to replicate in nondividing cells in culture and in vivo. The replication of these viruses was examined in eyes and trigeminal ganglia for 1–7 d after corneal inoculation in mice with null mutations (−/−) in interferon receptors (IFNR) for type I IFNs (IFN-α/βR), type II IFN (IFN-γR), and both type I and type II IFNs (IFN-α/β/γR). Viral titers in eyes and ganglia of IFN-γR−/− mice were not significantly different from congenic controls. However, in IFN-α/βR−/− or IFN-α/β/γR−/− mice, growth of all mutants, including those with significantly impaired growth in cell culture, was enhanced by up to 1,000-fold in eyes and trigeminal ganglia. Blepharitis and clinical signs of infection were evident in IFN-α/βR−/− and IFN-α/β/γR−/− but not control mice for all viruses. Also, IFNs were shown to significantly reduce productive infection of, and spread from intact, but not scarified, corneas. Particularly striking was restoration of near-normal trigeminal ganglion replication and neurovirulence of an ICP34.5 mutant in IFN-α/βR−/− mice. These data show that IFNs play a major role in limiting mutant and wild-type HSV replication in the cornea and in the nervous system. In addition, the in vivo target of ICP34.5 may be host IFN responses. These experiments demonstrate an unsuspected role for host factors in defining the phenotypes of some HSV mutants in vivo. The phenotypes of mutant viruses therefore cannot be interpreted based solely upon studies in cell culture but must be considered carefully in the context of host factors that may define the in vivo phenotype
XO-5b: A Transiting Jupiter-sized Planet With A Four Day Period
The star XO-5 (GSC 02959-00729, V=12.1, G8V) hosts a Jupiter-sized,
Rp=1.15+/-0.12 Rjup, transiting extrasolar planet, XO-5b, with an orbital
period of P=4.187732+/-0.00002 days. The planet mass (Mp=1.15+/-0.08 Mjup) and
surface gravity (gp=22+/-5 m/s^2) are significantly larger than expected by
empirical Mp-P and Mp-P-[Fe/H] relationships. However, the deviation from the
Mp-P relationship for XO-5b is not large enough to suggest a distinct type of
planet as is suggested for GJ 436b, HAT-P-2b, and XO-3b. By coincidence XO-5
overlies the extreme H I plume that emanates from the interacting galaxy pair
NGC 2444/NGC 2445 (Arp 143).Comment: 10 pages, 9 Figures, Submitted to Ap
Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler
We report the distribution of planets as a function of planet radius (R_p),
orbital period (P), and stellar effective temperature (Teff) for P < 50 day
orbits around GK stars. These results are based on the 1,235 planets (formally
"planet candidates") from the Kepler mission that include a nearly complete set
of detected planets as small as 2 Earth radii (Re). For each of the 156,000
target stars we assess the detectability of planets as a function of R_p and P.
We also correct for the geometric probability of transit, R*/a. We consider
first stars within the "solar subset" having Teff = 4100-6100 K, logg =
4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having
noise low enough to permit detection of planets down to 2 Re. We count planets
in small domains of R_p and P and divide by the included target stars to
calculate planet occurrence in each domain. Occurrence of planets varies by
more than three orders of magnitude and increases substantially down to the
smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25
AU) in our study. For P < 50 days, the radius distribution is given by a power
law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with
decreasing planet size agrees with core-accretion, but disagrees with
population synthesis models. We fit occurrence as a function of P to a power
law model with an exponential cutoff below a critical period P_0. For smaller
planets, P_0 has larger values, suggesting that the "parking distance" for
migrating planets moves outward with decreasing planet size. We also measured
planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The
occurrence of 2-4 Re planets in the Kepler field increases with decreasing
Teff, making these small planets seven times more abundant around cool stars
than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure
Infrared Transmission Spectroscopy of the Exoplanets HD209458b and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope
Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component
Kepler-14b: A massive hot Jupiter transiting an F star in a close visual binary
We present the discovery of a hot Jupiter transiting an F star in a close visual (03 sky projected angular separation) binary system. The dilution of the host star's light by the nearly equalmagnitude stellar companion (∼0.5mag fainter) significantly affects the derived planetary parameters, and if left uncorrected, leads to an underestimate of the radius and mass of the planet by 10% and 60%, respectively. Other published exoplanets, which have not been observed with high-resolution imaging, could similarly have unresolved stellar companions and thus have incorrectly derived planetary parameters. Kepler-14b (KOI-98) has a period of P = 6.790 days and, correcting for the dilution, has a mass of Mp = 8.40+0.35 -0.34 M J and a radius of Rp = 1.136+0.073 -0.054 R J, yielding a mean density of ρp = 7.1 ± 1.1 g cm-3
Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data
On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (Rp < 1.25 R⊕), 288 super-Earth-size (1.25 R⊕ ≤ R p < 2 R⊕), 662 Neptune-size (2 R ⊕ ≤ Rp < 6 R⊕), 165 Jupiter-size (6 R⊕ ≤ Rp < 15 R ⊕), and 19 up to twice the size of Jupiter (15 R ⊕ ≤ Rp < 22 R⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems
KEPLER's First Rocky Planet: Kepler-10b
NASA's Kepler Mission uses transit photometry to determine the frequency of
earth-size planets in or near the habitable zone of Sun-like stars. The mission
reached a milestone toward meeting that goal: the discovery of its first rocky
planet, Kepler-10b. Two distinct sets of transit events were detected: 1) a 152
+/- 4 ppm dimming lasting 1.811 +/- 0.024 hours with ephemeris
T[BJD]=2454964.57375+N*0.837495 days and 2) a 376 +/- 9 ppm dimming lasting
6.86 +/- 0.07 hours with ephemeris T[BJD]=2454971.6761+N*45.29485 days.
Statistical tests on the photometric and pixel flux time series established the
viability of the planet candidates triggering ground-based follow-up
observations. Forty precision Doppler measurements were used to confirm that
the short-period transit event is due to a planetary companion. The parent star
is bright enough for asteroseismic analysis. Photometry was collected at
1-minute cadence for >4 months from which we detected 19 distinct pulsation
frequencies. Modeling the frequencies resulted in precise knowledge of the
fundamental stellar properties. Kepler-10 is a relatively old (11.9 +/- 4.5
Gyr) but otherwise Sun-like Main Sequence star with Teff=5627 +/- 44 K,
Mstar=0.895 +/- 0.060 Msun, and Rstar=1.056 +/- 0.021 Rsun. Physical models
simultaneously fit to the transit light curves and the precision Doppler
measurements yielded tight constraints on the properties of Kepler-10b that
speak to its rocky composition: Mpl=4.56 +/- 1.29 Mearth, Rpl=1.416 +/- 0.036
Rearth, and density=8.8 +/- 2.9 gcc. Kepler-10b is the smallest transiting
exoplanet discovered to date.Comment: Accepted, Astrophysical Journal, November 25, 2010; Eexpected
publication date: February 20, 201
Physiological Correlates of Volunteering
We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
Kepler-15b: a hot Jupiter enriched in heavy elements and the first Kepler mission planet confirmed with the Hobby-Eberly Telescope
We report the discovery of Kepler-15b (KOI-128), a new transiting exoplanet detected by NASA's Kepler mission. The transit signal with a period of 4.94days was detected in the quarter 1 (Q1) Kepler photometry. For the first time, we have used the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope (HET) to determine the mass of a Kepler planet via precise radial velocity (RV) measurements. The 24 HET/HRS RVs and 6 additional measurements from the Fibre-fed chelle Spectrograph spectrograph at the Nordic Optical Telescope reveal a Doppler signal with the same period and phase as the transit ephemeris. We used one HET/HRS spectrum of Kepler-15 taken without the iodine cell to determine accurate stellar parameters. The host star is a metal-rich ([Fe/H]= 0.36 ± 0.07) G-type main-sequence star with Teff = 5515 ± 124 K. The semi-amplitude K of the RV orbit is 78.7+8.5 -9.5ms-1, which yields a planet mass of 0.66 ± 0.1 M Jup. The planet has a radius of 0.96 ± 0.06R Jup and a mean bulk density of 0.9 ± 0.2 gcm-3. The radius of Kepler-15b is smaller than the majority of transiting planets with similar mass and irradiation level. This suggests that the planet is more enriched in heavy elements than most other transiting giant planets. For Kepler-15b we estimate a heavy element mass of 30-40 M ⊕