227 research outputs found
Characterization of a highly efficient N-doped TiO 2 photocatalyst prepared via factorial design
The preparation of titanium dioxide nanoparticles doped with nitrogen for application as a photocatalyst in the decomposition of azo dyes was optimized by factorial planning. Five variables were evaluated and the results showed that the stirring method of the reaction medium, the nitrogen source and the calcination temperature are the determining parameters that affect the photocatalytic activity. With this methodology, it was possible to obtain an optimized photocatalyst (K1) with high surface area and high mineralization efficiency (100%) of the dye Ponceau 4R under solar irradiation. K1, its non-doped version and the worst photocatalyst obtained by the factorial planning (K2) were characterized by several techniques to rationalize the different behaviors. The observed mineralization rate constants under artificial UV-A radiation were in the order of 10â2, 10â4 and 10â3 minâ1, respectively, for K1, K2 and the non-doped oxide. As shown by N2 sorption isotherms, the powders exhibited large variations in porosity as well as in the specific surface area, with values ranging from 63.03 m2 gâ1 for K1 to 12.82 m2 gâ1 for K2. Infrared spectra showed that the calcination of the doped oxides between 300 and 500 °C leads to considerable loss of the nitrogen content, which is corroborated by XPS measurements that also indicate the presence of oxygen vacancies on their surfaces. Nanosecond transient absorption measurements show that the electronâhole half-lifetime in K1 is 870 ns, ca. two times longer than that observed for the other photocatalysts. Additionally, dye degradation studies under solar radiation reveal that K1 is ca. 28% faster than the non-doped TiO2 under similar conditions. This higher photoactivity for K1 is attributed to its extended visible light absorption and the optimized morphological and electronic properties.DFG/BA 1137/8-
Charge carrier dynamics and photocatalytic behavior of TiO2 nanopowders submitted to hydrothermal or conventional heat treatment
The solâgel technique followed by conventional (TiO2-1) and hydrothermal (TiO2-2) thermal treatment was employed to prepare TiO2-based photocatalysts with distinct particle sizes and crystalline structures. The as prepared metal oxides were evaluated as photocatalysts for gaseous HCHO degradation, methanol, and dye oxidation reactions. Additionally, metallic platinum was deposited on the TiO2 surfaces and H2 evolution measurements were performed. The photocatalytic activities were rationalized in terms of morphologic parameters along with the electron/hole dynamics obtained from transient absorption spectroscopy (TAS). TiO2-2 exhibits smaller particle size, poorer crystallinity, and higher surface area than TiO2-1. Moreover the hydrothermal treatment leads to formation of the metastable brookite phase, while TiO2-1 exhibits only the anatase phase. TAS measurements show that the electron/hole recombination of TiO2-2 is faster than that of the latter. Despite that, TiO2-2 exhibits higher photonic efficiencies for photocatalytic oxidation reactions, which is attributed to its larger surface area that compensates for the decrease of the surface charge carrier concentration. For H2 evolution, it was found that the surface area has only a minor effect and the photocatalyst performance is controlled by the efficiency of the electron transfer to the platinum islands. This process is facilitated by the higher crystallinity of TiO2-1, which exhibits higher photonic efficiency for H2 evolution than that observed for TiO2-2. The results found here provide new insights into the correlations between thermal treatment conditions and photocatalytic activity and will be useful for the design of high performance photocatalysts.FundacËao de Amparo `a Pesquisa do Estado de Minas GeraisConselho Nacional de Desenvolvimento CientifŽıco e TecnologŽıcoCoordenacËao de Aperfeiçoamento de Pessoal de NŽıvel SuperiorDFG/BA 1137/8-
Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model
Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio
Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family
Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. in an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. the monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. the monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. the assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.Fundação de Amparo Ă Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo Ă Pesquisa do Estado de SĂŁo Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)ERC AdG SISYPHEUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Ultraestrutura Celular Hertha Meyer, BR-21941 Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Metab Macromol Firmino Torres de Castro, BR-21941 Rio de Janeiro, BrazilLab Bioinformat, Lab Nacl Computacao Cient, Rio de Janeiro, BrazilINRIA Grenoble Rhone Alpes, BAMBOO Team, Villeurbanne, FranceUniv Lyon 1, CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, FranceUniv Estadual Campinas, Inst Biol, Dept Genet Evolucao & Bioagentes, SĂŁo Paulo, BrazilUniv SĂŁo Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Ciencias Farmaceut, SĂŁo Paulo, BrazilLab Nacl Ciencia & Tecnol Bioetano, SĂŁo Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, Belo Horizonte, MG, BrazilUniv Fed Goias, Inst Ciencias Biol, Mol Biol Lab, Goiania, Go, BrazilFundacao Oswaldo Cruz, Inst Carlos Chagas, Lab Biol Mol Tripanossomatideos, Curitiba, Parana, BrazilFundacao Oswaldo Cruz, Inst Carlos Chagas, Lab Genom Func, Curitiba, Parana, BrazilUniv Estadual Campinas, Ctr Pluridisciplinar Pesquisas Quim Biol & Agr, SĂŁo Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Parasitol, Belo Horizonte, MG, BrazilUniv Fed Santa Catarina, Dept Microbiol Imunol & Parasitol, Ctr Ciencias Biol, Lab Protozool & Bioinformat, Florianopolis, SC, BrazilUniv Fed Vicosa, Dept Bioquim & Biol Mol, Ctr Ciencias Biol & Saude, Vicosa, MG, BrazilInst Butantan, Lab Especial Ciclo Celular, SĂŁo Paulo, BrazilUniv SĂŁo Paulo, Dept Biol, Fac Filosofia Ciencias & Letras Ribeirao Preto, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, SĂŁo Paulo, BrazilWeb of Scienc
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
- âŠ