16 research outputs found

    Transduction‐Specific ATLAS Reveals a Cohort of Highly Active L 1 Retrotransposons in Human Populations

    Full text link
    L ong IN terspersed E lement‐1 ( LINE ‐1 or L 1) retrotransposons are the only autonomously active transposable elements in the human genome. The average human genome contains ∼80–100 active L1s, but only a subset of these L1s are highly active or ‘hot’. Human L1s are closely related in sequence, making it difficult to decipher progenitor/offspring relationships using traditional phylogenetic methods. However, L1 m RNA s can sometimes bypass their own polyadenylation signal and instead utilize fortuitous polyadenylation signals in 3′ flanking genomic DNA . Retrotransposition of the resultant m RNA s then results in lineage specific sequence “tags” (i.e., 3′ transductions) that mark the descendants of active L1 progenitors. Here, we developed a method (Transduction‐Specific Amplification Typing of L1 Active Subfamilies or TS ‐ ATLAS ) that exploits L1 3′ transductions to identify active L1 lineages in a genome‐wide context. TS ‐ ATLAS enabled the characterization of a putative active progenitor of one L1 lineage that includes the disease causing L1 insertion L1 RP , and the identification of new retrotransposition events within two other “hot” L1 lineages. Intriguingly, the analysis of the newly discovered transduction lineage members suggests that L1 polyadenylation, even within a lineage, is highly stochastic. Thus, TS ‐ ATLAS provides a new tool to explore the dynamics of L1 lineage evolution and retrotransposon biology. Long INterspersed Element‐1 (L1) retrotransposons are the only independently mobile elements in the human genome. We developed Transduction‐Specific Amplification Typing of L1 Active Subfamilies (TS‐ATLAS), which utilizes L1‐transduced genomic sequences, to identify a subset of highly active L1s genome‐wide. TS‐ATLAS enabled the characterization of the putative progenitor of an active disease‐causing L1 lineage, and identified new retrotransposition events within two other “hot” L1 lineages.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98809/1/humu22327.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98809/2/humu22327-sup-0001-si.pd

    LINE-1 Retrotransposition Activity in Human Genomes

    Get PDF
    SummaryHighly active (i.e., “hot”) long interspersed element-1 (LINE-1 or L1) sequences comprise the bulk of retrotransposition activity in the human genome; however, the abundance of hot L1s in the human population remains largely unexplored. Here, we used a fosmid-based, paired-end DNA sequencing strategy to identify 68 full-length L1s that are differentially present among individuals but are absent from the human genome reference sequence. The majority of these L1s were highly active in a cultured cell retrotransposition assay. Genotyping 26 elements revealed that two L1s are only found in Africa and that two more are absent from the H952 subset of the Human Genome Diversity Panel. Therefore, these results suggest that hot L1s are more abundant in the human population than previously appreciated, and that ongoing L1 retrotransposition continues to be a major source of interindividual genetic variation

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Genome-wide amplification of proviral sequences reveals new polymorphic HERV-K(HML-2) proviruses in humans and chimpanzees that are absent from genome assemblies

    Get PDF
    BACKGROUND: To date, the human population census of proviruses of the Betaretrovirus-like human endogenous retroviral (HERV-K) (HML-2) family has been compiled from a limited number of complete genomes, making it certain that rare polymorphic loci are under-represented and are yet to be described. RESULTS: Here we describe a suppression PCR-based method called genome-wide amplification of proviral sequences (GAPS) that selectively amplifies DNA fragments containing the termini of HERV-K(HML-2) proviral sequences and their flanking genomic sequences. We analysed the HERV-K(HML-2) proviral content of 101 unrelated humans, 4 common chimpanzees and three centre d'etude du polymorphisme humain (CEPH) pedigrees (44 individuals). The technique isolated HERV-K(HML-2) proviruses that had integrated in the genomes of the great apes throughout their divergence and included evolutionarily young elements still unfixed for presence/absence. CONCLUSIONS: By examining the HERV-K(HML-2) proviral content of 145 humans we detected a new insertionally polymorphic Type I HERV-K(HML-2) provirus. We also observed provirus versus solo long terminal repeat (LTR) polymorphism within humans at a previously unreported, but ancient, locus. Finally, we report two novel chimpanzee specific proviruses, one of which is dimorphic for a provirus versus solo LTR. Thus GAPS enables the isolation of uncharacterised HERV-K(HML-2) proviral sequences and provides a direct means to assess inter-individual genetic variation associated with HERV-K(HML-2) proviruses

    Recent progress in understanding aldosterone secretion

    No full text
    1. The synthesis and secretion of aldosterone in the adrenal zona glomerulosa in physiologic conditions is controlled by adrenocorticotropin (ACTH), angiotensin II (AII), and extracellular (K+). 2. ACTH effects on aldosterone output are explained by cyclic AMP- (cAMP)- and Ca2+-dependent mechanisms. 3. All effects on aldosterone secretion are initiated by an increase in Ca2+ influx through hormoneoperated Ca2+ channels and G- protein- and phospholipase C- (PLC) dependent hydrolysis of phosphoinositides leading to the generation of inositol 1,4,5 trisphosphate (IP3) and DAG that induce intracellular Ca2+ release and PKC activation, respectively. 4. ACTH increases DAG formation with marginal or undetectable IP3 generation. The effect of ACTH on DAG levels is discussed. 5. The requirement of external Ca2+ in PLC activation and aldosterone secretion also is discussed

    L1 Hybridization Enrichment:A Method for Directly Accessing De Novo L1 Insertions in the Human Germline

    Get PDF
    Long interspersed nuclear element 1 (L1) retrotransposons are the only autonomously mobile human transposable elements. L1 retrotransposition has shaped our genome via insertional mutagenesis, sequence transduction, pseudogene formation, and ectopic recombination. However, L1 germline retrotransposition dynamics are poorly understood because de novo insertions occur very rarely: the frequency of disease-causing retrotransposon insertions suggests that one insertion event occurs in roughly 18–180 gametes. The method described here recovers full-length L1 insertions by using hybridization enrichment to capture L1 sequences from multiplex PCR-amplified DNA. Enrichment is achieved by hybridizing L1-specific biotinylated oligonucleotides to complementary molecules, followed by capture on streptavidin-coated paramagnetic beads. We show that multiplex, long-range PCR can amplify single molecules containing full-length L1 insertions for recovery by hybridization enrichment. We screened 600 µg of sperm DNA from one donor, but no bone fide de novo L1 insertions were found, suggesting a L1 retrotransposition frequency of <1 insertion in 400 haploid genomes. This lies below the lower bound of previous estimates, and indicates that L1 insertion, at least into the loci studied, is very rare in the male germline. It is a paradox that L1 replication is ongoing in the face of such apparently low activity. Hum Mutat 32:1–11, 2011. © 2011 Wiley-Liss, Inc

    A novel L1 retrotransposon marker for HeLa cell line identification

    Full text link
    The HeLa cell line is the oldest, most widely distributed, permanent human cell line. As a nearly ubiquitous inhabitant of laboratories using tissue culture techniques, its aggressive growth characteristics make it a problematic contaminant that can overgrow less robust cell lines. Consequently, HeLa contamination is common in both the research laboratory and cell line repository contexts, and its detection is hampered by the lack of a rapid, sensitive and robust assay. Here we report the development of a HeLa-specific DNA diagnostic test: a single duplex detection PCR assay targeting an L1 retrotransposon insertion. All HeLa clones from a geographically diverse panel were positive by this assay, and the particular L1 insertion we identified appears to be unique to the HeLa cell line. The assay can detect very low levels of HeLa contamination (<1%), and can be performed on un-purified cell pellets, allowing rapid routine screening

    Assessing the facilitators and barriers of interdisciplinary team working in primary care using normalisation process theory: an integrative review.

    Get PDF
    Interdisciplinary team working is of paramount importance in the reform of primary care in order to provide cost-effective and comprehensive care. However, international research shows that it is not routine practice in many healthcare jurisdictions. It is imperative to understand levers and barriers to the implementation process. This review examines interdisciplinary team working in practice, in primary care, from the perspective of service providers and analyses 1 barriers and facilitators to implementation of interdisciplinary teams in primary care and 2 the main research gaps
    corecore