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SUMMARY

Highly active (i.e., ‘‘hot’’) long interspersed element-1
(LINE-1 or L1) sequences comprise the bulk of
retrotransposition activity in the human genome;
however, the abundance of hot L1s in the human
population remains largely unexplored. Here, we
used a fosmid-based, paired-end DNA sequencing
strategy to identify 68 full-length L1s that are differen-
tially present among individuals but are absent from
the human genome reference sequence. The majority
of these L1s were highly active in a cultured cell
retrotransposition assay. Genotyping 26 elements
revealed that two L1s are only found in Africa and
that two more are absent from the H952 subset of
the Human Genome Diversity Panel. Therefore, these
results suggest that hot L1s are more abundant in the
human population than previously appreciated, and
that ongoing L1 retrotransposition continues to be
a major source of interindividual genetic variation.

INTRODUCTION

L1s comprise �17% of human DNA and have been an instru-

mental force in shaping genome architecture (Lander et al.,

2001). Most L1s are molecular fossils that cannot move (retro-

transpose) to new genomic locations (Grimaldi and Singer,

1983; Lander et al., 2001). However, a small number of human-

specific L1 (L1Hs) elements remain retrotransposition compe-

tent (Badge et al., 2003; Brouha et al., 2003; Sassaman et al.,

1997). On occasion, their retrotransposition has resulted in

sporadic cases of human disease (reviewed in Babushok and

Kazazian, 2007; Kazazian et al., 1988).

During the past 15 years, computational, molecular biological,

and genomic approaches have been used to identify and

characterize L1Hs elements (Badge et al., 2003; Bennett et al.,

2004; Boissinot et al., 2000; Boissinot et al., 2004; Brouha

et al., 2003; Lander et al., 2001; Moran et al., 1996; Myers
et al., 2002; Ovchinnikov et al., 2001; Sheen et al., 2000;

Xing et al., 2009). Several themes have emerged from these

studies. First, L1Hs elements can be stratified into several

subfamilies (pre-Ta, Ta-0, Ta-1, Ta1-d, Ta1-nd) based upon

the presence of diagnostic sequence variants contained within

their 50 and/or 30 untranslated regions (UTRs) (Boissinot et al.,

2000; Skowronski et al., 1988; Smit et al., 1995). Second,

many L1Hs elements are dimorphic in that they are differentially

present in individual genomes and/or are present in an individual

but absent from the haploid Human Genome Reference

sequence (HGR) (Badge et al., 2003; Bennett et al., 2004; Bois-

sinot et al., 2004; Brouha et al., 2003; Lander et al., 2001; Myers

et al., 2002; Xing et al., 2009). Third, it has been estimated that

the average human genome contains �80–100 active (retro-

transposition-competent) L1Hs elements, and that only a small

number of highly active L1Hs elements (‘‘hot’’ L1s) account for

the bulk of retrotransposition activity in the HGR (Brouha et al.,

2003). Those studies, as well as recent efforts to identify inser-

tion, deletion, and inversion polymorphisms (structural variants)

in humans (Kidd et al., 2008; Korbel et al., 2007; Tuzun et al.,

2005; Xing et al., 2009), indicate that ongoing L1 retrotransposi-

tion contributes to interindividual genetic variation.

Here, we employed a fosmid-based, paired-end DNA re-

source to identify full-length L1Hs elements in the genomes of

six individuals of diverse geographic origin. Over half (37/68) of

the newly identified L1s were hot for retrotransposition when

examined in a cultured cell assay (Moran et al., 1996). Genotyp-

ing a subset of these L1s further revealed that some are likely

restricted to Africans, whereas others are absent from the

Human Genome Diversity Panel (HGDP) (Cann et al., 2002), sug-

gesting that they are present at very low allele frequencies.
RESULTS

An Experimental Strategy to Identify Full-Length
Human-Specific L1s
To identify novel, full-length L1s in the genomes of geographi-

cally diverse individuals, we exploited a fosmid-based, paired-

end DNA sequencing strategy that previously was used to
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Figure 1. A Strategy for Identifying Dimor-

phic L1Hs Elements in Individual Human

Genomes

In silico comparison of the fosmid end sequences

(red squares) from individual genomic libraries

(blue horizontal line) and the HGR (pink horizontal

line) enables the detection of fosmids that may

contain insertions or deletions with respect to

the HGR (see dashed lines). Insertion fosmids

were screened by allele-specific oligonucleotide

hybridization to detect characters that are present

in the 50 UTR of newer L1 elements (one discrimi-

nating character utilized, a deletion of the G

residue at bp 74 in recent L1s, is indicated in

maroon). Putative L1Hs-containing fosmids were

analyzed by Southern blotting with a 50 UTR probe

(blue arrow). A representative digest and Southern

blot is shown. The �6 kb band is diagnostic for

the full-length L1. The additional hybridizing band

(�1.3 kb band liberated from the L1 50 flank in

this Southern blot example) serves to distinguish

individual fosmids. ATLAS and/or DNA sequenc-

ing confirmed the presence of a dimorphic, full-

length L1Hs insertion. The endonuclease (EN),

reverse transcriptase (RT), and cysteine-rich (C)

domains of ORF2 (blue rectangle) are indicated.
identify structural variants in human DNA (Kidd et al., 2008;

Tuzun et al., 2005). Fragments of genomic DNA approximately

40 kb in size were individually cloned using fosmid vectors

(see Experimental Procedures). Sequence reads were obtained

from both ends of each insert (paired-end sequences) and

compared to the HGR. End sequences from genomic fragments

that do not differ significantly in size from the HGR will map

�40 kb away from each other. In contrast, paired-end sequences

derived from genomic fragments containing a full-length, dimor-

phic �6 kb L1Hs element will be separated by �34 kb when

mapped to the HGR (Figure 1) (Tuzun et al., 2005). In general,

the predicted variants were required to be supported by two

fosmid clones containing putative insertions from the same indi-

vidual. The size cutoffs used in our screening protocols are

biased to allow the identification of full-length or near full-length

L1 insertion polymorphisms, but not severely 50 truncated L1

sequences, which are replication deficient (Table 1). Through

this scheme, we should be able to identify the bulk of full-length

L1s in an individual genome that are dimorphic when compared

to the HGR.

Fosmids fulfilling the above mapping criterion were subjected

to a series of screens (Figure 1). First, allele-specific oligonucleo-

tide hybridization using probes directed against diagnostic

sequences in the L1Hs 50 UTR identified insertion fosmids that

contained putative dimorphic L1Hs elements (Boissinot et al.,

2000; Tuzun et al., 2005). Second, Southern blotting with a probe

directed against the 50 UTR of L1.3 (accession# L19088) enabled

the identification of fosmids that contained putative full-length

L1Hs elements (Dombroski et al., 1993; Sassaman et al., 1997).

Third, a suppression PCR-based method (ATLAS) (Badge et al.,

2003) and/or direct sequencing was used to verify the presence

of a full-length (or near full-length) L1Hs element in the fosmid.
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Finally, genomic sequences flanking the 50 and 30 ends of the

newly identified L1Hs elements were used as probes in BLAT

searches (http://genome.ucsc.edu/cgi-bin/hgBlat?command =

start) (Kent, 2002) to confirm that the L1 was absent from the

HGR (NCBI build 36.1/hg18). Flanking sequences also were

used to determine whether any of the L1Hs elements were

present in a database of known polymorphic retrotransposon

insertions (dbRIP; http://dbrip.brocku.ca/) (Wang et al., 2006).

Two additional L1Hs elements were identified through direct

sequencing of the fosmids (#1-(2-1) and 3-(2-1)).

Identification of Full-Length L1Hs Elements
from Geographically Diverse Individuals
We first conducted a pilot study to examine a fosmid library from

a female individual (G248; NA15510) for full-length L1Hs inser-

tions (Table 1) (Tuzun et al., 2005). Despite the fact that this

library was optimized for identifying �8 kb insertion polymor-

phisms as part of the Human Genome Structural Variation

project (HGSV) (Kidd et al., 2008; Tuzun et al., 2005), we were

able to identify five novel L1Hs elements using our screening

protocol (Table 1).

The above data provided ‘‘proof of principle’’ that our strategy

was effective for identifying full-length, dimorphic L1Hs elements.

Thus, we next screened fosmid libraries from five females repre-

senting four distinct geographic populations that were studied as

part of the HapMap project (one Japanese [NA18956], one

Chinese [NA18555], one Western European CEPH [NA12878],

and two Yoruban individuals [NA19240, NA19129]) (International

HapMap Consortium, 2005; Kidd et al., 2008). Size cutoffs

allowed detection of insertion polymorphisms as small as �4.2–

5.5 kb and enabled the identification of an additional 64 L1Hs

elements (Table 1) (Kidd et al., 2008). As our strategy is biased
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Table 1. Summary of Data for the Six Libraries

Individual/Library Data LINE-1 Data

Library ID Coriell ID Population

Library Mean

In Silico Insert Size

SD

(kb)

Detection

Limit (kb)

Dimorphic

Elements

Novel (Not in

dbRIP) Active Hot

HGR ‘‘Hot’’

Elements

G248 NA15510 N/A 39.89 2.75 8.25 5 5 4 4 2

ABC9 NA18956 Japan 39.51 2.26b 4.52b 16 16 9 8 2

ABC10 NA19240 Yorubaa 41 1.84 5.52 20 18 11 9 2

ABC11 NA18555 China 40.03 1.77 5.31 13 12 9 8 2

ABC12 NA12878 CEPHa 39.75 1.4 4.2 8 7 4 3 2

ABC13 NA19129 Yorubaa 39.29 1.77 5.31 7 7 6 5 2

Total 69/68c 65 43 37

Column 1: library identifiers. Column 2: Coriell identifier of individuals analyzed. Column 3: population of origin for individuals in the HapMap study.

Column 4: the average insert size of each individual library (in kb). Column 5: the standard deviation in insert size of each individual library. Column

6: the detection limit for the size of insertions in each library. For ABC9 a more reduced threshold was applied than that used previously (Kidd

et al., 2008). Column 7: the number of elements found in each library that are absent from the HGR. Column 8: the number of elements from column

7 that are not completely annotated in dbRIP (Wang et al., 2006). Column 9: the number of elements from column 7 that were active in retrotransposition

assays. Column 10: elements from column 9 that retrotransposed at levels > 10% of L1.3, a known active element. Column 11: the number of the HGR

hot elements that were present in each individual (Brouha et al., 2003).
a Daughters of Hap Map trios.
b Differs from Kidd et al. (2008).
c One element recurred in ABC11 & 12- #4-1 and #5-77. Neither allele is active, and the element is in dbRIP.
toward finding novel, full-length L1s, we generally observed

a decrease in the number of L1Hs elements identified in each

successive library screen (e.g., ABC13 was the last library

analyzed and contained relatively few novel L1Hs elements). In

total, we identified 69 L1Hs elements that were absent from the

HGR, one of which was identified in two different individuals

(#4-1 and 5-77). This element also was completely annotated in

dbRIP, unlike 65 of the distinct 68 L1s identified in this study

(Table 1). The number of elements discovered at each stage of

the analysis is detailed in the Extended Experimental Procedures.

Many of the Newly Identified L1Hs Elements
Are Hot for Retrotransposition
We next tested if the L1Hs elements identified in our screens

were active for retrotransposition in cultured cells. Sixty-seven

elements were cloned into either a pBluescript and/or pCEP4

L1 expression vector that contained an mneoI retrotransposition

indicator cassette in its 30 UTR (#2-42 was refractory to cloning;

details in Experimental Procedures) (Freeman et al., 1994; Moran

et al., 1996). The pBluescript-based L1 constructs lack an exog-

enous promoter; thus, L1 expression is driven from its native 50

UTR. Elements isolated from libraries ABC11–13 were assayed

in this context. L1s isolated from the G248, ABC9, and ABC10

libraries were assayed in pCEP4 (CMV+/50UTR+) and/or pBlue-

script (50UTR+) based contexts. The resultant plasmids were

transfected into HeLa cells and successful retrotransposition

events were detected as G418-resistant foci (Figure 2A) (Moran

et al., 1996). Retrotransposition activities are reported relative to

L1.3, and hot refers to an L1 that jumps at >10% of L1.3 (see

Table S1 available online). Notably, 22 elements yielded similar

retrotransposition efficiencies relative to L1.3 when tested in

either a CMV+/50UTR+ or a 50UTR+ context (data not shown).

Since the subcloning procedure does not involve PCR, we truly

are testing the retrotransposition capability of each of the identi-

fied L1Hs elements in our screen.
Each individual contained between three and nine hot L1s in

their genome and 55% (37/67) of the L1Hs elements tested

were hot for retrotransposition (Figures 2A and 2B; Table 1).

These 37 hot L1Hs elements represent an approximately 4-fold

increase in the number of hot L1s identified in previous studies

(Badge et al., 2003; Brouha et al., 2002, 2003; Kimberland

et al., 1999; Lander et al., 2001; Sassaman et al., 1997). Exami-

nation of the 30 UTR sequences of the 68 L1s uncovered six

elements that contain an ACG in place of the Ta subfamily diag-

nostic ACA characters. These elements are termed ‘‘pre-Ta’’ and

represent an older L1 subfamily (Boissinot et al., 2000; Brouha

et al., 2003; Kazazian et al., 1988; Lander et al., 2001; Myers

et al., 2002; Skowronski et al., 1988). Two pre-Ta L1s (#3-5

and 5-55) were hot for retrotransposition (Figure 2B; Table S1).

These data agree with previous studies, which showed that a

de novo insertion of a pre-Ta L1 into the Factor VIII gene resulted

in a sporadic case of hemophilia A (Kazazian et al., 1988).

Hallmarks and Insertion Locations of L1s Identified
in This Study
We next sequenced each L1Hs element in its entirety and

compared these data to fosmid sequences previously deposited

in GenBank (Kidd et al., 2008). We annotated each L1 for hall-

marks of retrotransposition as well as their chromosomal envi-

ronments (Table S2). In general, the L1Hs elements were flanked

by target-site duplications that ranged from 6 to 20 bp, inserted

into an L1 endonuclease consensus cleavage sequence (Cost

and Boeke, 1998; Feng et al., 1996; Morrish et al., 2002), and

their 30 ends had either homopolymeric poly(A) tails that ranged

from�8–41bp in size or interrupted poly(A) tails/30 transductions

ranging from �18 bp to 1105 bp in length (Table S2) (Goodier

et al., 2000; Holmes et al., 1994; Moran et al., 1999; Pickeral

et al., 2000).

A subset of the elements (�32/68) contained an additional

1–14 bp of untemplated nucleotides at their 50 ends, termed 50
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Figure 2. L1Hs Activity in Six Human Genomes

(A) Cloning strategy: All but one L1Hs element were cloned directly from fosmids using AccI sites in their 50 UTRs and 30 UTRs, respectively (red vertical lines; see

Experimental Procedures). The L1s then were ligated into vectors that either contain or lack a CMV promoter (black rectangle). Both vectors contain the mneoI

retrotransposition indicator cassette (light blue) in the L1 30 UTR. This cassette allows for detection of retrotransposition events in a cell culture retrotransposition

assay. SD = splice donor. SA = splice acceptor. Active elements confer G418 resistance to HeLa cells, whereas defective elements, as illustrated by the RT

mutant control (RT- L1), do not.

(B) Representative G418-resistant foci for the 20 elements from the Yoruban library, ABC10: Nine of these elements were highly active (large suns to the left of

assay image), and two more retained a low level of activity (small suns). One element (#3-5, red box) is a hot pre-Ta L1 (#3-5 was tested in a pBluescript backbone

[50UTR+]; all others were tested in a pCEP4 [CMV+/50UTR+]) backbone (Extended Experimental Procedures). Table S1 displays retrotransposition efficiencies for

each L1 identified in this study. Figure S1 provides details on the EN-deficient element #3-24.

(C) The 68 distinct L1Hs elements identified in this study and their positions in the genome: Red vertical lines and text represent hot or highly active elements.

Orange vertical lines with black text represent low-level activity elements. Blue vertical lines with black text represent ‘‘dead’’ or inactive elements. The black line

indicates the one untested element (#2-42). Ideograms were adapted from UCSC genome browser: http://genome.ucsc.edu (Kent et al., 2002).
end heterogeneity (Athanikaret al., 2004; Lavie etal., 2004). Five of

these L1s have an extra G at their 50 ends, and one has three extra

Gs when compared to a hot L1Hs consensus sequence (Brouha

et al., 2003). These extra nucleotides potentially could result either

from a terminal transferase activity associated with the L1 reverse

transcriptase or from reverse transcription of the 7-methyl-

guanosine cap at the 50 end of L1 RNA (Boeke, 2003; Gilbert
1162 Cell 141, 1159–1170, June 25, 2010 ª2010 Elsevier Inc.
et al., 2005; Symer et al., 2002). The majority of elements identified

were full-length; however, we also found seven elements (e.g.,

#1-5 and 2-30) that were truncated within their 50 UTR. These

data, along with the fact that the fosmid libraries provided �4-

to 5-fold coverage of each haplotype from the six individuals

(Kidd et al., 2008), indicate that our screening procedure identified

the majority of the dimorphic full-length L1s in these genomes.

http://genome.ucsc.edu/


The 68 L1Hs elements were dispersed throughout the

genome. We did not identify L1Hs elements on chromosomes

16 or 19 (Figure 2C); however, this result probably reflects our

small sample size rather than a systematic bias against their

ability to insert on these chromosomes (Lander et al., 2001).

Consistently, we previously were able to detect the insertion of

engineered L1s into chromosomes 16 and 19 of HeLa cells

(Gilbert et al., 2005).

Approximately 32% (22/68) of L1Hs elements were present in

the introns of known RefSeq genes (http://www.ncbi.nlm.nih.

gov/RefSeq/), and mutations in several of these genes are

implicated in human genetic disorders (Table S3). Thirteen L1

insertions were in the antisense orientation (i.e., were transcribed

in the opposite orientation to the gene), whereas nine L1 inser-

tions were in the same transcriptional orientation as the gene.

Since �26%–38% of the genome is spanned by genes (Venter

et al., 2001), the data suggest that the L1s have inserted

randomly with respect to gene content, which is in agreement

with previous studies (Gilbert et al., 2002, 2005; Ovchinnikov

et al., 2001; Symer et al., 2002).

Our sequencing studies uncovered several expected trends

and some unexpected results. All 37 hot L1 elements and the 6

low-level activity elements had two intact open reading frames

(ORFs). A consensus sequence derived from these 37 hot L1s

was identical at the amino acid level to a previously derived

consensus (Brouha et al., 2003) (data not shown).

Inactive elements generally had frameshift (5/24) or chain-

terminating nonsense mutations (9/24) in at least one of the L1

ORFs. However, ten of these low-level activity or inactive

elements contained two intact open reading frames. One L1

(#3-24) contained an S228P missense mutation within the endo-

nuclease (EN) domain of ORF2p (Feng et al., 1996; Weichen-

rieder et al., 2004). Though L1s containing EN mutations are

unable to retrotranspose in HeLa cells, they can retrotranspose

in Chinese Hamster Ovary (CHO) cells deficient in the nonhomol-

ogous end-joining (NHEJ) pathway of DNA repair, presumably by

parasitizing a free 30 OH group to initiate target-primed reverse

transcription (TPRT) (Morrish et al., 2002, 2007). Interestingly,

although #3-24 is inactive in NHEJ-proficient cell lines, the L1

retrotransposed at roughly 60% the efficiency of the wild-type

control, L1.3, in NHEJ-deficient CHO cells (Morrish et al., 2002).

Introducing the S228P change into L1.3 (Sassaman et al., 1997)

also allowed efficient EN-independent retrotransposition, indi-

cating that this mutation is largely responsible for the inactivity

of #3-24 in HeLa cells (Figure S1).

Analysis of genomic sequences flanking the 68 L1Hs elements

revealed a number of interesting findings. The poly(A) tails of

25 L1s were interrupted or contained 30 transductions (Goodier

et al., 2000; Holmes et al., 1994; Moran et al., 1999; Pickeral

et al., 2000), 17 of which clustered into ‘‘subfamilies’’ of L1Hs

elements. In one case, we identified an L1 (#2-1) as the likely

source element for one of these subfamilies. For #1-3, 3-31,

and 1-5, these transductions/interrupted poly(A) tails were iden-

tical to those in L1Hs elements that have caused disease-

producing mutations (e.g., L1RP, LRE3) (Brouha et al., 2002;

Kimberland et al., 1999). In other cases, the transductions denote

examples of recently amplified subfamilies (Goodier et al., 2000;

Lander et al., 2001; Pickeral et al., 2000).
Examining the 50 genomic flanks showed that the retrotrans-

position of a full-length L1 from the ABC9 genomic library

(#2-24) that integrated on chromosome 10 was accompanied

by �250 bp of an Alu element that maps to chromosome 16.

The Alu sequence is in the opposite transcriptional orientation

to the L1, 13 bp of unmapped sequence separates the elements,

and the whole insertion is flanked by target-site duplications

(TSDs) (Figure S2). Thus, though most of the full-length L1Hs

elements identified here have been amplified by canonical

retrotransposition, recombination- and/or replication-mediated

repair processes may facilitate the integration of some elements

(Gilbert et al., 2002, 2005; Symer et al., 2002). Additionally, our

screen allowed us to resolve possible sequence anomalies in

the HGR. For example, one fosmid that lacks a dimorphic

L1Hs element (#6-105) actually contains two L1s (a PA2 and

pre-Ta element) that likely were collapsed into a harlequin

element during the HGR assembly (Figure S2).

Finally, the data also enabled us to examine allelic heteroge-

neity associated with L1Hs elements. For example, one L1

(#5-70) was present in the HGR but contained a stop codon in

ORF2 and was not previously tested for activity (Brouha et al.,

2003). Interestingly, #5-70 retrotransposed at �8% of the level

of L1.3, further illustrating how allelic heterogeneity can impact

retrotransposon activity (Lutz et al., 2003; Seleme et al., 2006).

Allele Frequencies of Genotyped Elements
The 68 L1Hs elements identified here are dimorphic with respect

to presence; thus, we tested if a subset of these L1s represented

population-restricted or potentially private alleles. To address

this question, we first compiled existing genotyping data (Badge

et al., 2003; Myers et al., 2002; Xing et al., 2009). Additional gen-

otyping then was conducted on a subset of the L1s discovered

here (26 in total; see Extended Experimental Procedures for

selection criteria). The 26 L1s first were genotyped in a CEPH

panel of 129 unrelated individuals. Nine L1s absent from the

CEPH panel then were genotyped in a Zimbabwean panel of 72

unrelated individuals. Finally, if the element was absent from

both panels, it was genotyped on the H952 subset of the HGDP

consisting of�1050 individuals from�51 worldwide populations

(Figure 3A and Table S4) (Cann et al., 2002; Rosenberg, 2006).

Two elements (#3-5 and 3-31) genotyped on the HGDP exist at

very low allele frequencies and were only found in Africans. Two

other L1Hs elements (#1-5 and 3-24) were absent from the

HGDP (Table S4). Element #3-24 (the S228P mutant described

above) was found in the ABC10 Yoruban library. Further geno-

typing revealed that the L1Hs element containing the mutation

was present in her mother (but not her father), excluding a de

novo origin (Figure 3B). The other putatively ‘‘private’’ L1Hs

element was from G248 (#1-5), so we could not examine its

segregation in a trio. Interestingly, this hot L1 insertion occurred

into an intron of the ABCA1 gene (Figure 3C); mutations in

ABCA1 have been associated with Tangier disease and low

serum HDL levels (Frikke-Schmidt, 2010).

The Total Number of Active L1Hs Elements Present
in ABC13
To estimate the total number of active L1s in one individual, we

carried out in silico genotyping of the 68 L1Hs elements in
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Figure 3. Allele Frequencies of L1Hs Alleles

in the Population

(A) Genotyping assays: L1s were queried in panels

of individuals for their absence (solid gray lines) or

presence (red line). Genotyping of 26 elements

in the three panels allowed the discovery of

population restricted or potentially ‘‘private’’ L1Hs

elements. The expected amplicon sizes are dia-

grammed for element #3-24.

(B) Pedigrees showing the inheritance of two

elements typed in the ABC10 trio: Genotyping

gels show the heritability of #3-31 (African specific)

and #3-24 (absent from the HGDP). E and F at the

top of the gel image indicate PCR results for empty

and filled sites. M, F, and C at the bottom of the

image indicate lanes for the mother, father, and

child of the trio.

(C) Example datasheet for the G248 element #1-5:

Empty site: insertion site in the HGR. EN cleavage

site: the endonucleolytic cleavage site used by L1

EN to initiate retrotransposition. pA length: the

approximate L1 poly(A) tail length; 30 transduc-

tions and interrupted poly(A) tails also are anno-

tated. TSD length: the length of the target site

duplication flanking the L1Hs element (underlined

lettering). Table S2 contains datasheets for each

L1 in this study. Table S3 contains L1Hs insertion

locations with respect to genes. Figure S2 displays

a noncanonical L1Hs insertion and documents

a possible sequence anomaly in the HGR.
ABC13, the last library examined in our subtractive scheme.

We identified 20 regions containing distinct L1 insertions identi-

fied in the first five individuals that corresponded to insertion

fosmids in the ABC13 HGSV track (http://hgsv.washington.

edu/) of the UCSC genome browser (Figure 4A; Table S4) (Kent

et al., 2002; Kidd et al., 2008). PCR genotyping confirmed that

ABC13 contained 18 of these 20 elements (Figure 4B) and was

homozygous with respect to presence for 3 of the elements.

This result suggests that in silico genotyping could be used as

a screening tool to identify L1Hs elements present at low allele

frequencies in the population (Table S4).

Adding the 18 L1Hs elements identified by in silico genotyping

to the 7 novel L1Hs elements identified in the ABC13 genome

through our fosmid screens revealed that this individual contains

25/68 L1Hs elements identified in this study. Additional genotyp-

ing revealed that this individual contains 2 of the hot L1s charac-

terized in a previous study (Table 1) (Brouha et al., 2003).
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Combining these numbers with our retro-

transposition data indicates that the

ABC13 genome contains 14 potentially

hot L1Hs elements, and that at least 3 of

these elements are present in a homozy-

gous state.

Estimates of L1 Age
Our data suggest that, on average, the 68

L1Hs elements identified here are present

at lower allele frequencies, are more

active, and may be evolutionarily younger
than those in previous studies (Brouha et al., 2003). To test this

hypothesis, we derived maximum likelihood estimates for the

ages of Ta-1 L1Hs elements in our dataset and that of Brouha

et al. (Brouha et al., 2003; Marchani et al., 2009). This analysis

revealed that the Ta-1 L1Hs elements identified here are signifi-

cantly younger (1.0 million years [MY] 95% confidence interval

[C.I.] 0.98–1.01 MY) than those reported previously (2.01 MY

95% C.I. 2.00–2.02 MY) (Marchani et al., 2009) (1.73 MY 95%

C.I. 1.69–1.77 MY) (Brouha et al., 2003).

The maximum likelihood estimated age (Marchani et al., 2009)

(1.0 MY) of the L1s reported here differs significantly from that

calculated using the ad hoc method, which uses sequence diver-

gence within subfamilies of elements to determine age (Carroll

et al., 2001) (1.18 MY old). These two methods are known to

be respectively robust (the maximum likelihood method) and

sensitive (the ad hoc method) to the presence of multiple active

lineages in the dataset (i.e., departures from the master gene

http://hgsv.washington.edu/
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Figure 4. An Estimate of the Number of

Active L1Hs Elements in an Individual

(ABC13) Genome

(A) In silico genotyping: The last library in our

study, ABC13, was examined in silico (see text)

for the presence of insertion fosmids mapping to

the location of L1Hs elements found in other indi-

viduals. Element 3-17 is used as an example. All

blue lines represent insertion fosmids in the

genomes of the eight individuals on the HGSV

track (http://hgsv.washington.edu/) of the UCSC

genome browser (http://genome.ucsc.edu) (Kent

et al., 2002). The ABC7, 8, and 14 libraries were

not investigated in this study.

(B) PCR validation: The elements identified in silico

were genotyped using similar schemes to that

shown in Figure 3A to validate the predictions

from the HGSV track of the UCSC browser.

Element 3-17 is used to illustrate the genotyping.

ABC10 and ABC13 are heterozygous with respect

to the L1Hs insertion. ABC11 lacks the L1Hs inser-

tion. Table S4 displays genotyping results for all

elements in this study.
model of L1 evolution) (Cordaux et al., 2004). The difference in

these two estimates may indicate that members of multiple

active L1Hs subfamilies are present in our dataset and suggests

that the true age of the L1s may be younger than either calcula-

tion suggests. Indeed, the above data are consistent with the

hypothesis that the HGR is strongly biased in favor of older, fixed

L1Hs elements.

We next used a neighbor-joining approach, rooted with an

intact chimpanzee L1 element, to generate a phylogenetic tree

of the 68 full-length L1Hs elements (Figure 5, see Experimental

Procedures). As predicted, pre-Ta elements were located near

the root of the tree. Interestingly, two known (L1RP and LRE3)

and five other currently amplifying subfamilies clustered together

on the tree (Figure 5; see groups of colored elements), even

though the interrupted poly(A) tail/transduction sequences

themselves were excluded from the sequence alignments.

DISCUSSION

We have developed a systematic process to identify novel,

dimorphic, active L1Hs elements in genomes of individuals

from diverse geographic populations. Many of the newly identi-

fied L1Hs elements exist at low allele frequencies in the popula-

tion, and four L1Hs elements represent ‘‘rare’’ alleles, three of

which appear to be restricted to Africans. Sequence-based
Cell 141, 1159–117
age estimates further reveal that these

L1Hs elements appear to be, on average,

evolutionarily younger than those identi-

fied in previous studies (Brouha et al.,

2003; Marchani et al., 2009). These data

are consistent with the notion that full-

length active L1s are systematically

underrepresented in available genome

reference sequences (Badge et al., 2003;
Boissinot et al., 2004; Brouha et al., 2003; Sassaman et al., 1997;

Sheen et al., 2000; Xing et al., 2009).

Our study has underscored the effectiveness of fosmid paired-

end libraries in the discovery of novel, active L1Hs elements.

Though a number of technologies have been developed to iden-

tify polymorphic L1s (Badge et al., 2003; Bennett et al., 2004;

Boissinot et al., 2004; Brouha et al., 2003; Moran et al., 1996;

Myers et al., 2002; Sheen et al., 2000; Xing et al., 2009), the

approach described here is not reliant upon PCR fidelity, readily

allows the identification of active L1Hs elements, and makes

sequencing of genomic flanking sequences, poly(A) tails, and

L1-mediated transductions relatively straightforward. Thus, we

predict that the fosmid-based approach likely will be superior to

second-generation, low-coverage genome sequencing method-

ologies (e.g., many individual genomes characterized in the

1000 genomes project; http://www.1000genomes.org/page.

php) for comprehensively identifying and characterizing rare L1

alleles in individual genomes. Indeed, recently published genome

sequences highlight the difficulties in detecting and unambigu-

ously mapping highly repetitive insertions (relative to a refer-

ence genome), including L1Hs elements (Bentley et al., 2008;

McKernan et al., 2009; Wang et al., 2008; Wheeler et al., 2008).

Our analysis revealed that many active L1s cluster in small

subfamilies. In the strictest sense, these data argue against

a master gene model (Deininger et al., 1992) and instead support
0, June 25, 2010 ª2010 Elsevier Inc. 1165
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Figure 5. Phylogenetic Tree of the L1Hs Elements Identified in This Study

The tree is a single neighbor-joining tree (with branch lengths corrected using the Kimura 2 parameter model of nucleotide substitution) with 68 full-length

elements from our study. The numbers at particular nodes indicate the number of times that node was observed in 1000 bootstrap replicates of the dataset.

Only bootstrap values exceeding 70% are shown. The brackets at the right side indicate previously described ‘‘transduction subfamilies’’ (L1RP [labeled RP

in the Figure] and LRE3) and distinct L1Hs subfamilies currently capable of amplifying in human genomes (I–V) (Goodier et al., 2000; Pickeral et al., 2000). Those

subfamilies are highlighted in the same color to show their clustering on the tree. Retrotransposition activity (% relative to L1.3) as well as allele frequency (e.g.,

AF = 0.012), if determined, are appended to the sequence identifiers. Element #4-17 contains ACG characters in its 30 UTR, which are diagnostic for pre-Ta L1s;

however, the element clusters with the Ta0 subfamily. Activities for elements AL357559 and AL022171 were previously determined (Brouha et al., 2003). n/a = an

L1 element not assayed for retrotransposition. The tree and age estimates use sequences indicated in Table S5.
a model in which multiple active source L1Hs elements (including

members of both the pre-Ta and Ta subfamilies) are currently

retrotransposing in modern human genomes (Cordaux et al.,

2004). We cannot formally exclude a ‘‘stealth’’ model, where

L1s in unfavorable expression contexts sometimes give rise to

new retrotransposition-competent source elements that can be

expressed from a more favorable genomic context (Han et al.,

2005). However, the most parsimonious explanation of our

data is that multiple source L1Hs elements and subfamilies
1166 Cell 141, 1159–1170, June 25, 2010 ª2010 Elsevier Inc.
with limited ‘‘life spans’’ exist in the genome. We posit that hot

L1Hs elements must give rise to new, active progeny at a faster

rate than they are inactivated by cellular mutational processes

(see Figure 6 for model); this can lead to a scenario where small

numbers of currently active L1Hs lineages may outcompete

older L1s for limiting reagents, such as host factors (Boissinot

and Furano, 2001). This competition scenario both supports

and extends current lineage succession models and could

potentially explain the monophyletic history of L1s and the



Figure 6. Multiple Source Loci Model for

Continued L1Hs Activity

An element (source locus) that is both active and in

a conducive genomic environment can retrotrans-

pose. Shown here is an example of a progenitor

element that can be associated with subsequent

members of a ‘‘family’’ through the use of interrup-

ted poly(A) tails and/or 30 transduced sequence

(30 red arrow and line). Distinct elements are

marked by distinguishing TSDs specific for their

new integration site (different colored horizontal

arrows). There are many of these families active

in human genomes, such as L1RP, LRE3, and the

five families noted in Figure 5. Although host

processes (lightning bolt) may inactivate some

older elements, some of their descendents may

retain the ability to retrotranspose and could

harbor the 30 transduction/interrupted poly(A) tail.
appearance of a replication-dominant L1Hs subfamily (Boissinot

et al., 2000; Cordaux et al., 2004; Seleme et al., 2006).

Our dataset is still relatively small, and it remains difficult to

estimate the actual number of hot L1s in the extant popula-

tion. However, our ability to readily identify rare hot L1s in the

genomes of geographically diverse individuals strongly suggests

that these highly active L1Hs elements are more abundant in the

population than previously appreciated. Indeed these results are

in general agreement with the studies published by Iskow et al.

(2010 [this issue of Cell]) and Huang et al. (2010 [this issue of Cell]).

The active L1Hs elements identified here also have the poten-

tial to impact modern human genomes by retrotransposing

flanking genomic sequences to new chromosomal locations

and by serving as substrates for nonallelic homologous recombi-

nation (reviewed in Cordaux and Batzer, 2009; Moran et al.,

1999). The proteins encoded by these L1s also may promote

the retrotransposition of Alu elements and noncoding RNAs

(Bennett et al., 2008; Dewannieux et al., 2003; Garcia-Perez et al.,

2007). Indeed, our data support the hypothesis that hot L1s are

actively retrotransposing in modern-day human genomes and

suggest that some of the L1 alleles identified here could serve

as source elements for disease-producing L1 insertions.

EXPERIMENTAL PROCEDURES

Creation of Fosmid Libraries and Identification

of Insertion-Containing Fosmids

Genomic DNA from the six individuals was obtained from transformed lympho-

blastoid cell lines (available from the Coriell Cell Repository). The DNA was

hydrodynamically sheared, end-repaired, size selected for 40 kb fragments

by pulsed field gel electrophoresis, and ligated into fosmid vectors (Donahue

and Ebling, 2007). Agencourt Biosciences Corporation constructed all

libraries, with the exception of the G248 library, which was constructed as

part of the human genome project finishing effort. From each library, approx-

imately 1 million individual cloned fragments were arrayed into 384-well plates.

End-sequence pairs were obtained from both ends of each DNA fragment

using standard capillary sequencing and were mapped back to the HGR.

Insertion-containing fosmids were identified as the subset of fosmids contain-
ing an apparent insert that was�3 standard deviations smaller than the library

mean (Kidd et al., 2008; Tuzun et al., 2005).

Screening of Fosmid Clones for LINE-1 Insertions

Insertion-containing fosmids identified in silico were screened for L1Hs

elements in the following manner. First, all insertion fosmids were subjected

to allele-specific oligonucleotide hybridization to identify characters in the 50

UTRs of newer L1 subfamilies (Badge et al., 2003; Boissinot et al., 2000).

This protocol was adapted from ‘‘hybridization of bacterial DNA on filters’’

(Sambrook et al., 1989). Fosmid DNAs were prepared according to the Very

Low-Copy Plasmid/Cosmid Purification protocol for the QIAGEN-tip 100

Midi prep kit (QIAGEN). Those DNAs were subjected to Southern blotting

followed by ATLAS (Badge et al., 2003) and/or direct sequencing to identify

L1Hs elements that were absent from the HGR. Sequences flanking the

L1Hs elements then were used as probes in BLAT searches at the UCSC

genome browser (http://genome.ucsc.edu/) to determine the insertion site in

the HGR (Kent, 2002; Kent et al., 2002). Detailed protocols for each step of

the screening process, as well as the number of fosmids positive at each stage

of the analysis, can be found in the Extended Experimental Procedures.

Cloning of L1s

In general, L1Hs elements were cloned directly from insertion-containing

fosmids by digestion with AccI (Sassaman et al., 1997). The restricted DNA

was separated on a 0.8% agarose gel, and the�6 kb L1-containing restriction

fragment was cloned into an L1 expression vector. This method captures

the vast majority of the L1Hs sequence, leaving only the first �35 bp and

last �50 bp of the original L1 50 and 30 UTRs present in the cloning vector,

respectively. One element, #2-42, was refractory to this cloning procedure,

as it contains a polymorphism near the 30 end of ORF2 that creates an addi-

tional AccI site. The PDH L1.3 mutant was generated by site-directed muta-

genesis. Each L1Hs element was sequenced in its entirety. Detailed protocols

for the creation of each construct are included in the Extended Experimental

Procedures.

L1 Retrotransposition Assays

We used a modification of a transient transfection protocol to conduct retro-

transposition assays in HeLa and CHO cells (Moran et al., 1996; Morrish

et al., 2002; Wei et al., 2000). Briefly, cells in 6-well dishes were transfected

using the Fugene 6 agent (Roche) with 1 mg of plasmid (containing the indicator

cassette) per each well. Cells were fed with media �24 hr post-plating and

daily from 72 hr or 5 days with media containing either 400 mg/ml G418 or
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10 mg/ml blasticidin, respectively. Fourteen days post-transfection, cells were

fixed and stained with 0.1% crystal violet. Colonies were counted in the appro-

priate wells, and these counts were normalized to green fluorescent protein

(GFP) transfection efficiency. Detailed protocols for culture and assay condi-

tions are found in the Extended Experimental Procedures.

Genotyping and Panels

The genomic locations of L1Hs insertions were compared to a database of

human retrotransposon insertion polymorphisms (dbRIP; http://dbrip.

brocku.ca/) (Wang et al., 2006). PCR genotyping assays were designed for

a subset of L1Hs elements that were not completely annotated in dbRIP.

Genotyping initially was conducted on a CEPH panel of 129 unrelated individ-

uals of Northern European ancestry. If a L1Hs element was absent from the

CEPH panel, it was genotyped on a panel containing genomic DNAs from 72

unrelated Zimbabwean individuals. Finally, if an L1Hs element was absent

from both genotyping panels, it was genotyped on the H952 subset (Rosen-

berg, 2006) of the HGDP (Cann et al., 2002) (see Figure 3A). In silico genotyping

was conducted using the HGSV track of the UCSC genome browser (Kent

et al., 2002; Kidd et al., 2008). Details about these analyses are in the Extended

Experimental Procedures.

Estimation of L1 Element Age

Sequences of the 69 full-length L1 elements were classified into subfamilies

using the L1Xplorer analysis website (Penzkofer et al., 2005). Ta-1, Ta-0,

and Non-Canonical (NC) (Brouha et al., 2003) elements were separately

aligned using Muscle 3.52 (Edgar, 2004) on the Phylomen web server (http://

phylemon.bioinfo.cipf.es/cgi-bin/home.cgi) (Tarraga et al., 2007). Raw align-

ments were manually refined using Jalview to remove all indels, all variable

CpG sites, and the L1 polypurine tract (Waterhouse et al., 2009). Maximum

likelihood estimates of the age (T) of each group, the sampling variance of T,

and its 95% C.I. were calculated using the mleT script (Marchani et al.,

2009) running under Matlab 7.2�2007a (The Mathworks Inc., Natick, MA,

USA). The subroutine CountMutations (Marchani et al., 2009) was also utilized

to calculate the number of substitutions in the datasets to enable the ‘‘ad hoc’’

subfamily age estimation method (Marchani et al., 2009).

Phylogenetic Tree

The sequences of the 69 elements were aligned as described above. An

intact chimpanzee element (BS000022_PTROG) was used to root the tree.

The alignment also includes an intact Ta-1 L1 (L19088_L1.3), a non-Ta L1

(AL022171_NTA), a pre-Ta L1 (AL357559), and the ‘‘Hot Consensus’’ L1

element from Brouha et al. (2003). Raw alignments were manually refined

using Jalview (Waterhouse et al., 2009) to remove large indels and truncated

elements; this led to the exclusion of #6-113 due to a large 50 UTR deletion.

A single neighbor-joining tree of the 68 remaining full-length elements was

constructed using the PHYLIP package (Felsenstein, 1989). Branch lengths

were corrected using the Kimura 2 parameter model (Kimura, 1980). To assess

the reliability of the phylogeny, 1000 bootstrapped resamples of the multiple

alignment were made using the seqboot program of the PHYLIP package

(Felsenstein, 1989). The neighbor-joining tree derived from the full dataset

was manually annotated with bootstrap values using Dendroscope (Huson

et al., 2007) (Figure 5). Only bifurcations that occurred in more than 70% of

bootstrap resamples are labeled.
ACCESSION NUMBERS

Accession numbers for all elements are tabulated in Table S5. Two L1Hs

elements (accession numbers (#1-5) GU477636 and (#6-102) GU477637)

were recently posted in GenBank.
SUPPLEMENTAL INFORMATION

Supplemental Information contains Extended Experimental Procedures, two

figures, and five tables and can be found with this article online at doi:

10.1016/j.cell.2010.05.021.
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