1,238 research outputs found

    Influence of propranolol, enalaprilat, verapamil, and caffeine on adenosine A2A-receptor–mediated coronary vasodilation

    Get PDF
    AbstractObjectivesThe study was done to determine the effects of propranolol, enalaprilat, verapamil, and caffeine on the vasodilatory properties of the adenosine A2A-receptor agonist ATL-146e (ATL).BackgroundATL is a new adenosine A2A-receptor agonist proposed as a vasodilator for myocardial stress perfusion imaging. Beta-blockers, angiotensin-converting enzyme (ACE) inhibitors, and calcium blockers are commonly used for the treatment of coronary artery disease (CAD), and their effect on ATL-mediated vasodilation is unknown. Dietary intake of caffeine is also common.MethodsIn 19 anesthetized, open-chest dogs, hemodynamic responses to bolus injections of ATL (1.0 μg/kg) and adenosine (60 μg/kg) were recorded before and after administration of propranolol (1.0 mg/kg, ATL only), enalaprilat (0.3 mg/kg, ATL only), caffeine (5.0 mg/kg, ATL only), and verapamil (0.2 mg/kg bolus, ATL and adenosine).ResultsNeither propranolol nor enalaprilat attenuated the ATL-mediated vasodilation (225 ± 86% and 237 ± 67% increase, respectively, p = NS vs. control). Caffeine had an inhibitory effect (97 ± 28% increase, p < 0.05 vs. control). Verapamil blunted both ATL- and adenosine-induced vasodilation (63 ± 20% and 35 ± 7%, respectively, p < 0.05 vs. baseline), and also inhibited the vasodilation induced by the adenosine triphosphate-sensitive potassium (KATP) channel activator pinacidil.ConclusionsBeta-blockers and ACE inhibitors do not reduce the maximal coronary flow response to adenosine A2A-agonists, whereas verapamil attenuated this vasodilation through inhibition of KATPchannels. The inhibitory effect of verapamil and KATPchannel inhibitors like glybenclamide on pharmacologic stress using adenosine or adenosine A2A-receptor agonists should be evaluated in the clinical setting to determine their potential for reducing the sensitivity of CAD detection with perfusion imaging

    Molecular analysis distinguishes metastatic disease from second cancers in patients with retinoblastoma

    Get PDF
    The pediatric ocular tumor retinoblastoma readily metastasizes, but these lesions can masquerade as histologically similar pediatric small round blue cell tumors. Since 98% of retinoblastomas have RB1 mutations and a characteristic genomic copy number “signature”, genetic analysis is an appealing adjunct to histopathology to distinguish retinoblastoma metastasis from second primary cancer in retinoblastoma patients. Here, we describe such an approach in two retinoblastoma cases. In patient one, allele-specific (AS)-PCR for a somatic nonsense mutation confirmed that a temple mass was metastatic retinoblastoma. In a second patient, a rib mass shared somatic copy number gains and losses with the primary tumor. For definitive diagnosis, however, an RB1 mutation was needed, but heterozygous promoter→exon 11 deletion was the only RB1 mutation detected in the primary tumor. We used a novel application of inverse PCR to identify the deletion breakpoint. Subsequently, AS-PCR designed for the breakpoint confirmed that the rib mass was metastatic retinoblastoma. These cases demonstrate that personalized molecular testing can confirm retinoblastoma metastases and rule out a second primary cancer, thereby helping to direct the clinical management

    Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    Get PDF
    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts

    Effects of Bolus and Continuous Nasogastric Feeding on Gastric Emptying, Small Bowel Water Content, Superior Mesenteric Artery Blood Flow, and Plasma Hormone Concentrations in Healthy Adults: A Randomized Crossover Study

    Get PDF
    Objective: We aimed to demonstrate the effect of continuous or bolus nasogastric feeding on gastric emptying, small bowel water content, and splanchnic blood flow measured by magnetic resonance imaging (MRI) in the context of changes in plasma gastrointestinal hormone secretion.Background: Nasogastric/nasoenteral tube feeding is often complicated by diarrhea but the contribution of feeding strategy to the etiology is unclear.Methods: Twelve healthy adult male participants who underwent nasogastric intubation before a baseline MRI scan, received 400 mL of Resource Energy (Nestle) as a bolus over 5 minutes or continuously over 4 hours via pump in this randomized crossover study. Changes in gastric volume, small bowel water content, and superior mesenteric artery blood flow and velocity were measured over 4 hours using MRI and blood glucose and plasma concentrations of insulin, peptide YY, and ghrelin were assayed every 30 minutes.Results: Bolus nasogastric feeding led to significant elevations in gastric volume (P < 0.0001), superior mesenteric artery blood flow (P < 0.0001), and velocity (P = 0.0011) compared with continuous feeding. Both types of feeding reduced small bowel water content, although there was an increase in small bowel water content with bolus feeding after 90 minutes (P < 0.0068). Similarly, both types of feeding led to a fall in plasma ghrelin concentration although this fall was greater with bolus feeding (P < 0.0001). Bolus feeding also led to an increase in concentrations of insulin (P = 0.0024) and peptide YY (P < 0.0001), not seen with continuous feeding.Conclusion: Continuous nasogastric feeding does not increase small bowel water content, thus fluid flux within the small bowel is not a major contributor to the etiology of tube feeding-related diarrhea

    Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists

    Get PDF
    Biased agonism at G protein–coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus β-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as β-arrestin recruitment. At the μ-opioid receptor (MOR), G protein–biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in β-arrestin–mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and β-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target

    Multi-modal representation of effector modality in frontal cortex during rule switching.

    Get PDF
    We report a functional magnetic resonance imaging (fMRI) study which investigated whether brain areas involved in updating task rules within the frontal lobe of the cerebral cortex show activity related to the modality of motor response used in the task. Participants performed a rule switching task using different effector modalities. In some blocks participants responded with left/right button presses, whilst in other blocks left/right saccades were required. The color of a Cue event instructed a left or right response based upon a rule, followed by a Feedback which indicated whether the rule was to stay the same or "Flip" on the next trial. The findings revealed variation in the locus of activity within the ventrolateral frontal cortex dependent upon effector modality. Other frontal areas showed no significant difference in activity between response epochs but changed their pattern of connectivity with posterior cortical areas dependent upon response. Multivariate analysis revealed that the pattern of activity evoked by Flip rule Feedbacks within an apparently supra modal frontal region (dorsolateral frontal cortex) discriminated between response epochs. The results are consistent with the existence of multi-modal representations of stimulus-response (SR) rules within the frontal cerebral cortex

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr
    corecore