
Molecular analysis distinguishes metastatic disease from 1 

second cancers in patients with retinoblastoma 2 

Hilary Racher a, Sameh Soliman b,c, Bob Argiropoulos d, Helen S.L. Chan b, Brenda L. Gallie b, 3 

Renée Perrier d, Donco Matevski a, Diane Rushlow a, Beata Piovesan a, Furqan Shaikh b, Heather 4 

MacDonald b, Timothy W. Corson *,e 5 

aImpact Genetics, Bowmanville, Ontario L1C 3K5, Canada 6 

bHospital for Sick Children, Toronto, Ontario M5G 1X8, Canada 7 

cOphthalmology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt 8 

dAlberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 9 

4N1, Canada 10 

eEugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, 11 

Indiana 46202, USA 12 

*Correspondence: Dr. Timothy W. Corson, Eugene and Marilyn Glick Eye Institute, Indiana 13 

University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana 46202, USA; 14 

Tel +1-317-274-3305; Fax: +1-317-274-2277. E-mail: tcorson@iupui.edu 15 

_________________________________________________________________________________
 
This is the author's manuscript of the article published in final edited form as: 
Racher H, Soliman S, Argiropoulos B, Chan HSL, Gallie BL, Perrier R, Matevski D, Rushlow D, 
Piovesan B, Shaikh F, MacDonald H, Corson TW. 2016. Molecular analysis distinguishes metastatic 
disease from second cancers in patients with retinoblastoma. Cancer Genetics, 209, 359–363.
http://dx.doi.org/10.1016/j.cancergen.2016.06.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/46964559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cancergen.2016.06.001


2 

Abstract 16 

The pediatric ocular tumor retinoblastoma readily metastasizes, but these lesions can masquerade 17 

as histologically similar pediatric small round blue cell tumors. Since 98% of retinoblastomas 18 

have RB1 mutations and a characteristic genomic copy number “signature”, genetic analysis is an 19 

appealing adjunct to histopathology to distinguish retinoblastoma metastasis from second 20 

primary cancer in retinoblastoma patients. Here, we describe such an approach in two 21 

retinoblastoma cases. In patient one, allele-specific (AS)-PCR for a somatic nonsense mutation 22 

confirmed that a temple mass was metastatic retinoblastoma. In a second patient, a rib mass 23 

shared somatic copy number gains and losses with the primary tumor. For definitive diagnosis, 24 

however, an RB1 mutation was needed, but heterozygous promoteràexon 11 deletion was the 25 

only RB1 mutation detected in the primary tumor. We used a novel application of inverse PCR to 26 

identify the deletion breakpoint. Subsequently, AS-PCR designed for the breakpoint confirmed 27 

that the rib mass was metastatic retinoblastoma. These cases demonstrate that personalized 28 

molecular testing can confirm retinoblastoma metastases and rule out a second primary cancer, 29 

thereby helping to direct the clinical management.  30 
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Introduction 34 

Retinoblastoma is the most common pediatric eye cancer with an incidence of 1/16000 to 35 

18000 worldwide [1]. Retinoblastoma results from biallelic mutation of the RB1 gene 36 

(OMIM:180200), with a rare exception [2]. One RB1 mutation is germline and heritable in 37 

50% of patients [3]. Thousands of somatic and germline mutations have been identified in 38 

RB1 in retinoblastoma tumors and patients, ranging from single nucleotide alterations to 39 

large chromosomal deletions (http://rb1-lsdb.d-lohmann.de). 40 

When retinoblastoma is diagnosed early, >95% of cases are effectively treated [4]. However, 41 

some patients (2%) develop metastases [5, 6]. Retinoblastoma can invade optic nerve, sclera, 42 

uvea, extend extraocularly into orbit and brain, and/or metastasize through blood, especially to 43 

bone marrow [7, 8]. Survival from metastatic retinoblastoma is poor.44 

In addition to risk for metastasis, patients with heritable retinoblastoma also have increased risk 45 

of developing second primary cancers, particularly if treated with external beam radiation [9, 46 

10]. These include soft tissue sarcomas, osteosarcoma, glioblastoma, melanoma, and brain 47 

tumors [11]. 48 

Distinguishing between metastatic disease and secondary cancer can be difficult in young 49 

retinoblastoma patients [12]. Metastatic retinoblastoma may have cytomorphologic features that 50 

overlap with other small round blue cell tumors, such as rhabdomyosarcoma, lymphoma, or 51 

nephroblastoma [13]. Making this distinction is important as the clinical management for 52 

metastatic retinoblastoma differs from the management of other cancers. Here, we demonstrate 53 

the utility of molecular testing for diagnosis of retinoblastoma metastases. 54 
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Materials and methods 55 

RB1 Mutation Detection 56 

RB1 mutations in eye tumors were identified by sequencing, AS-PCR for recurrent mutations (as 57 

seen in Patient A), and/or quantitative multiplex PCR (QM-PCR) for RB1 and copy number of 58 

genes characteristic of retinoblastoma. These techniques were performed as previously described 59 

[14-16].  60 

aCGH 61 

Tumor DNA of Patient B was extracted from ten 25 µm rib tumor tissue sections, using the 62 

QIAamp DNA FFPE Tissue kit (Qiagen, Valencia, CA, USA). Array comparative genomic 63 

hybridization (aCGH) was performed on this DNA hybridized with same-sex normal reference 64 

DNA (Kreatech, Amsterdam, Netherlands), using the CytoSure ISCA 8x60K v2.0 array platform 65 

(Oxford Gene Technology, Tarrytown, NY, USA), followed by data analysis with CytoSure 66 

Interpret software v4.7.13. All nucleotide coordinates are based on the GRCH37/hg19 67 

assemblies. 68 

Inverse PCR 69 

By examination of the QM-PCR and aCGH results, Patient B’s breakpoint was determined to lie 70 

between the exon 11 QM-PCR primers and the right flanking, 2-copy aCGH probe, at 71 

g.48942813 and g.48945286, respectively. This corresponds to positions g.69931 and g.72404 of 72 

RB1 (GenBank accession number NG_009009.1). Eco RI was chosen for restriction digestion as 73 

it does not cut within this normal sequence and 2 kbp upstream. Thus, fragments <5 kbp would 74 

not be found in normal DNA. 75 
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Tumor or normal DNA (1 µg) was digested with Eco RI, 3 h, 37°C, then 450 ng was self-ligated 76 

in a 450 µL reaction volume with T4 DNA ligase, 16°C overnight. After clean up, 100 ng of 77 

ligated DNA or unligated control DNA were used in a 50 µL PCR reaction containing KOD 78 

buffer, 0.5 µL KOD polymerase, 200 µM dNTPs, 2 mM MgSO4, 1.25 M Betaine, and 1 µM 79 

each primer. Inverse PCR primers were chosen in the normal sequence just downstream of the 80 

putative deletion region: F (72763-72784) CAACGATAGTGGTGGGAATGAA, R (72645-81 

72665) CTCAGTGGAATGGGACACAAA. The PCR protocol was 95°C 2 min, then 35 cycles 82 

of 95°C 20 s, 58°C 10 s, 70°C 2 min, then 10 min at 70°C. Samples were analyzed by agarose 83 

gel electrophoresis and excised bands cycle sequenced using the same PCR primers (GenScript, 84 

Piscataway, NJ, USA). 85 

To confirm specificity, nested PCR was performed using similar conditions, with 1 µL of the 86 

first round PCR reaction as template and primers F (72773) 87 

GGTGGGAATGAAGGAACAATAAC, R (72565) GGTTAAGAACCACTGAGACAGAC. 88 

Patient-specific AS-PCR 89 

AS-PCR primers unique to Patient B’s deletion were designed and optimized using methods 90 

previously described [17]. Specific conditions included 33 cycles, an annealing temperature of 91 

55°C, and primers F CATCAAGACGCCAAATCTCTG, R TAATCGAACCTAAGAGGTGTC.  92 

Results 93 

Patient A: Temple Tumor 94 

A 19 month old female presented with unilateral retinoblastoma (Group D, diffuse seeding of 95 

tumor below retina or into vitreous, International Intraocular Retinoblastoma Classification 96 
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[IIRC] [18]). The eye was enucleated and histopathology was interpreted to be pT2b (tumor 97 

superficially invades optic nerve head but does not extend past lamina cribrosa and exhibits focal 98 

choroidal invasion [19]), with no high risk features such as “massive” choroidal invasion (which 99 

would be pT3) (Figure 1A). Genetic analysis revealed a germline c.62delC (p.Pro21ArgfsTer43) 100 

RB1 mutation, and a somatic c.763C>T (p.Arg255Ter) mutation. A temple mass appeared four 101 

months later and was biopsied. Multiple CNS and bone marrow masses were then discovered on 102 

imaging (Figure 1B). Although location and histology of the temple mass was suggestive of 103 

metastatic retinoblastoma (Figure 1C), molecular analysis was employed for confirmation. AS-104 

PCR enabled confirmation of the somatic mutation in the mass (Figure 1D). Re-review of the 105 

pathology and serial sections of the whole eye revealed a focus of tumor within a scleral blood 106 

vessel (Figure 1A), which still would not be designated “high risk” according to the 2010 AJCC 107 

Cancer Staging Manual [19], where sclera is not mentioned. However, tumor invasion into the 108 

sclera has been suggested to indicate high risk [20]. With retinoblastoma metastasis confirmed, 109 

high dose systemic chemotherapy followed by autologous bone marrow transplant (BMT) was 110 

performed but with poor response. The child was started on palliation and died 25 months after 111 

initial diagnosis. 112 

Patient B: Chest Wall Tumor 113 

A 24 month old male presented with unilateral retinoblastoma (IIRC, group D [18]). The eye was 114 

enucleated, and histopathology revealed no high risk features (pT2a, focal choroidal invasion 115 

[19]) (Figure 2A, B). Our standard RB1 mutation detection workflow [14] identified a deletion, 116 

promoteràexon 11, in the primary tumor. No second, tumor-specific RB1 mutation was found, 117 

nor any constitutive RB1 mutation. The child was followed in clinic every three months. A year 118 

later the child experienced night pains and fever, initially misdiagnosed as Kawasaki’s disease 119 
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until a paravertebral mass (Figure 2C) was detected on MRI; fine needle aspiration cytology 120 

revealed a small round cell tumor (Figure 2D). The differential diagnosis included a second 121 

primary such as Ewing’s sarcoma, or metastatic retinoblastoma, which was considered unlikely 122 

due to the absence of histopathological features indicating risk for metastases. Serial sections of 123 

the whole eye again confirmed pT2a with focal choroidal invasion, not considered to indicate 124 

high risk for metastasis. 125 

Given the histopathologic uncertainty, we again employed molecular analysis to characterize this 126 

mass. We analyzed DNA from the rib mass and the primary tumor for the “hotspot” copy 127 

number change profile characteristic of retinoblastoma [16]. Both tumors shared the same pattern 128 

of common copy number changes of retinoblastoma (Figure 2E). Moreover, aCGH of rib mass 129 

DNA confirmed a pattern of genome-wide copy number changes consistent with those seen 130 

commonly in retinoblastoma (Figure 2F) [21]. This shared genomic “fingerprint” suggested that 131 

the rib mass and the primary tumor shared the same origin. 132 

Inverse PCR Identifies a Deletion Breakpoint 133 

To monitor this tumor, the identity of the unique deletion breakpoint was needed to enable AS-134 

PCR. aCGH confirmed a deletion of ≥238 kbp spanning the 5′ end of RB1 in the primary tumor 135 

(Figure 2G). Due to wide spacing of aCGH oligonucleotide probes around the deletion, a higher-136 

resolution approach was required to identify the precise deletion breakpoint. We turned to 137 

inverse PCR for this task. Based on the known, flanking two-copy QM-PCR primer and aCGH 138 

probe locations, we designed primers for inverse PCR (Figure 2H). These primers yielded a 2.6 139 

kbp band specific to tumor DNA that had undergone ligation (Figure 2I). 140 
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The 3′ ends of both the 2.6 kbp inverse PCR product and a confirmatory 2.5 kbp nested PCR 141 

product (data not shown) contained sequence that mapped to the RB1 gene, as far upstream as 142 

g.71606. However, the 5′ ends of these PCR products mapped to sequence upstream of the 143 

HNRNPA1L2 gene, confirming the breakpoint location. This gene lies ~4 Mbp telomeric of RB1, 144 

suggesting an unbalanced inversion. Using the breakpoint sequence, we designed primers that 145 

were specific for tumor DNA. This primer set could detect one part tumor DNA in 1000 parts 146 

normal DNA (Figure 2J), indicating a reasonably sensitive assay for minimal residual disease 147 

detection. The patient’s rib mass and pre-treatment bone marrow were both strongly positive, 148 

while post-treatment bone marrow was negative (Figure 2J). With metastatic retinoblastoma 149 

diagnosis confirmed, the child received systemic chemotherapy followed by high dose 150 

chemotherapy with autologous BMT. The child remained in remission for 12 months, then brain 151 

and meningeal recurrences reappeared. The child died 18 months after presentation with 152 

metastasis, 30 months after initial retinoblastoma diagnosis.  153 

Discussion 154 

We describe two patients originally diagnosed with retinoblastoma who subsequently developed 155 

additional tumors. After inconclusive histology, to ascertain if these were metastases, we 156 

employed molecular genetic strategies, including a novel use of inverse PCR to develop an AS-157 

PCR assay for the breakpoints of a large deletion. 158 

In both cases, the RB1 mutation originally found in the eye tumor was also present in the 159 

subsequent extraocular tumor, confirming that the disease was metastatic. In both cases, 160 

anatomic pathology failed to indicate risk of metastasis; both tumors behaved in an unusually 161 

aggressive manner that warrants further research. This report illustrates the value of innovative, 162 
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personalized molecular techniques in the differential diagnosis and management of metastatic 163 

retinoblastoma patients.  164 
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Figure legends  229 

Figure 1 Molecular confirmation of retinoblastoma metastatic to temple and humerus. (A) No 230 

features scored for high risk on pT2b eye pathology (H&E stained section of eye; blue box: 231 

retinal pigment epithelium upper right corner, with artifactual implantation of loose tumor 232 

between choroid and sclera; green box: tumor in a blood vessel in sclera; red box: tumor invasion 233 

of optic disc anterior to lamina cribrosa, yellow line). (B) Clinically apparent temporal mass 234 

(arrowhead) involving orbit and extradural space (arrow). (C) Histology of the temple mass 235 

invading muscle (H&E stained biopsy) is suggestive of retinoblastoma. (D) Agarose gel of AS-236 

PCR product confirms the presence of the somatic RB1 mutation in the temple mass, but not in 237 

the cerebrospinal fluid (CSF).  238 

Figure 2 Clinical features and molecular characterization of retinoblastoma metastatic to the 239 

ribs. (A) No features scored for high risk on pT2a eye pathology: green box shows small round 240 

blue cells; blue box shows intact retinal pigment epithelium and no invasion of sclera; (B) 241 

separate section of whole eye shows optic nerve dragged into the eye with no optic nerve 242 

invasion past cribriform plate. (C) MRI reveals a paravertebral mass (arrow). (D) Histology of 243 

paravertebral mass is inconclusive. (E) Quantitative multiplex PCR indicates gene gains and 244 

losses, common in retinoblastoma, shared between primary tumor and rib mass: three copies of 245 

KIF14 (1q32) and E2F3 (6p22), four copies of DEK (6p22), and one copy of CDH11 (16q22), 246 

although MYCN (2p24; commonly gained) was two-copy. (F) Whole genome aCGH profile of 247 

the rib mass DNA confirms a retinoblastoma-like pattern of genomic gains and losses: large 248 

gains at chromosomes 1q, 6p, 9q, 13q and 17q, and large losses at chromosomes 1p, 13p and 249 

16q. (G) aCGH defines a partial deletion of the RB1 gene: arr[hg19] 13q14.2(48703647-250 

48941658)x1. (H) Inverse PCR strategy for sequencing the breakpoint. (I) Successful 251 
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amplification of an inverse PCR product. T, tumor DNA; N, normal blood DNA. (J) Agarose gel 252 

of AS-PCR product confirms the presence of this deletion in the rib mass and in bone marrow 253 

(BM) DNA prior to therapy, and absence on indicated days after therapy. 254 


