52 research outputs found

    Sex differences in epigenetic age in Mediterranean high longevity regions

    Get PDF
    Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (β = 3.55; p = 1.22 × 10-12), Horvath (β = 1.07; p = 0.00378) and the Pace of Aging (β = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (β = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells

    Prevalence and characteristics of progressive fibrosing interstitial lung disease in a prospective registry

    Get PDF
    Rationale Progressive fibrosing interstitial lung disease (PF-ILD) is characterized by progressive physiologic, symptomatic, and/or radiographic worsening. The real-world prevalence and characteristics of PF-ILD remain uncertain. Methods Patients were enrolled from the Canadian Registry for Pulmonary Fibrosis between 2015-2020. PF-ILD was defined as a relative forced vital capacity (FVC) decline ≥10%, death, lung transplantation, or any 2 of: relative FVC decline ≥5 and &lt;10%, worsening respiratory symptoms, or worsening fibrosis on computed tomography of the chest, all within 24 months of diagnosis. Time-to-event analysis compared progression between key diagnostic subgroups. Characteristics associated with progression were determined by multivariable regression. Results Of 2,746 patients with fibrotic ILD (mean age 65±12 years, 51% female), 1,376 (50%) met PFILD criteria in the first 24 months of follow-up. PF-ILD occurred in 427 (59%) patients with idiopathic pulmonary fibrosis (IPF), 125 (58%) with fibrotic hypersensitivity pneumonitis (HP), 281 (51%) with unclassifiable ILD (U-ILD), and 402 (45%) with connective tissue diseaseassociated ILD (CTD-ILD). Compared to IPF, time to progression was similar in patients with HP (hazard ratio [HR] 0.96, 95% confidence interval, CI 0.79-1.17), but was delayed in patients with U-ILD (HR 0.82, 95% CI 0.71-0.96) and CTD-ILD (HR 0.65, 95% CI 0.56-0.74). Background treatment varied across diagnostic subtypes with 66% of IPF patients receiving antifibrotic therapy, while immunomodulatory therapy was utilized in 49%, 61%, and 37% of patients with CHP, CTD-ILD, and U-ILD respectively. Increasing age, male sex, gastroesophageal reflux disease, and lower baseline pulmonary function were independently associated with progression. Interpretation Progression is common in patients with fibrotic ILD, and is similarly prevalent in HP and IPF. Routinely collected variables help identify patients at risk for progression and may guide therapeutic strategie

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.Peer reviewe

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    Des sols agricoles et de leurs structures

    Get PDF
    Analysis of DNA methylation helps to understand the effects of environmental exposures as well as the role of epigenetics in human health. Illumina, Inc. recently replaced the HumanMethylation450 BeadChip (450K) with the EPIC BeadChip, which nearly doubles the measured CpG sites to &gt;850,000. Although the new chip uses the same underlying technology, it is important to establish if data between the two platforms are comparable within cohorts and for meta-analyses. DNA methylation was assessed by 450K and EPIC using whole blood from newborn (n&nbsp;=&nbsp;109) and 14-year-old (n&nbsp;=&nbsp;86) participants of the Center for the Health Assessment of Mothers and Children of Salinas. The overall per-sample correlations were very high (r&nbsp;&gt;0.99), although many individual CpG sites, especially those with low variance of methylation, had lower correlations (median r&nbsp;=&nbsp;0.24). There was also a small subset of CpGs with large mean methylation β-value differences between platforms, in both the newborn and 14-year datasets. However, estimates of cell type proportion prediction by 450K and EPIC were highly correlated at both ages. Finally, differentially methylated positions between boys and girls replicated very well by both platforms in newborns and older children. These findings are encouraging for application of combined data from EPIC and 450K platforms for birth cohorts and other population studies. These data in children corroborate recent comparisons of the two BeadChips in adults and in cancer cell lines. However, researchers should be cautious when characterizing individual CpG sites and consider independent methods for validation of significant hits

    Pre-Treatment Whole Blood Gene Expression Is Associated with 14-Week Response Assessed by Dynamic Contrast Enhanced Magnetic Resonance Imaging in Infliximab-Treated Rheumatoid Arthritis Patients

    No full text
    <div><p>Approximately 30% of rheumatoid arthritis patients achieve inadequate response to anti-TNF biologics. Attempts to identify molecular biomarkers predicting response have met with mixed success. This may be attributable, in part, to the variable and subjective disease assessment endpoints with large placebo effects typically used to classify patient response. Sixty-one patients with active RA despite methotrexate treatment, and with MRI-documented synovitis, were randomized to receive infliximab or placebo. Blood was collected at baseline and genome-wide transcription in whole blood was measured using microarrays. The primary endpoint in this study was determined by measuring the transfer rate constant (K<sub>trans</sub>) of a gadolinium-based contrast agent from plasma to synovium using MRI. Secondary endpoints included repeated clinical assessments with DAS28(CRP), and assessments of osteitis and synovitis by the RAMRIS method. Infliximab showed greater decrease from baseline in DCE-MRI K<sub>trans</sub> of wrist and MCP at all visits compared with placebo (<i>P</i><0.001). Statistical analysis was performed to identify genes associated with treatment-specific 14-week change in K<sub>trans</sub>. The 256 genes identified were used to derive a gene signature score by averaging their log expression within each patient. The resulting score correlated with improvement of K<sub>trans</sub> in infliximab-treated patients and with deterioration of K<sub>trans</sub> in placebo-treated subjects. Poor responders showed high expression of activated B-cell genes whereas good responders exhibited a gene expression pattern consistent with mobilization of neutrophils and monocytes and high levels of reticulated platelets. This gene signature was significantly associated with clinical response in two previously published whole blood gene expression studies using anti-TNF therapies. These data provide support for the hypothesis that anti-TNF inadequate responders comprise a distinct molecular subtype of RA characterized by differences in pre-treatment blood mRNA expression. They also highlight the importance of placebo controls and robust, objective endpoints in biomarker discovery.</p><p><b><i>Trial Registration:</i></b> ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/show/NCT01313520" target="_blank">NCT01313520</a></p></div

    Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression

    No full text
    Background Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). Methods We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. Results First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR  0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR  0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR  0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR  0.05). Conclusion Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect—a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.Medicine, Faculty ofNon UBCMedical Genetics, Department ofMedicine, Department ofRespiratory Medicine, Division ofReviewedFacultyResearcherOthe
    corecore