3,130 research outputs found

    SPAG17 Mediates Nuclear Translocation of Protamines During Spermiogenesis

    Get PDF
    Protamines (PRM1 and PRM2) are small, arginine-rich, nuclear proteins that replace histones in the final stages of spermiogenesis, ensuring chromatin compaction and nuclear remodeling. Defects in protamination lead to increased DNA fragmentation and reduced male fertility. Since efficient sperm production requires the translocation of protamines from the cytoplasm to the nucleus, we investigated whether SPAG17, a protein crucial for intracellular protein trafficking during spermiogenesis, participates in protamine transport. Initially, we assessed the protein-protein interaction between SPAG17 and protamines using proximity ligation assays, revealing a significant interaction originating in the cytoplasm and persisting within the nucleus. Subsequently, immunoprecipitation and mass spectrometry (IP/MS) assays validated this initial observation. Sperm and spermatids fro

    Analysis of factors influencing the ultrasonic fetal weight estimation

    Get PDF
    Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation

    Boundary work: An interpretive ethnographic perspective on negotiating and leveraging cross-cultural identity

    Get PDF
    The complexity of global organizations highlights the importance of members’ ability to span diverse boundaries that may be defined by organization structures, national borders, and/or a variety of cultures associated with organization, nation-based societal and work cultures, industries, and/or professions. Based on ethnographic research in a Japan–US binational firm, the paper describes and analyzes the boundary role performance of the firm\u27s Japanese members. It contributes toward theory on boundary spanning by introducing a “cultural identity negotiation” conceptual framework. We show boundary spanning as a process shaped through the interplay of the contextual issues that make a boundary problematic; an individual\u27s multiple repertoires of cultural knowledge; and the individual boundary spanner\u27s “negotiation”, through interaction with others, of his/her cultural identities – the sense of “who I am” as a cultural being that is fundamental to an individual\u27s self-concept. At the same time, we make transparent the epistemological and methodological foundations of an interpretive ethnographic approach, demonstrating its value for understanding complex organizational processes. Research findings have practical implications for the selection and training of an organization\u27s employees, particularly of persons who may be considered “bicultural”

    In vivo Bioluminescence Imaging of Ca(2+) Signalling in the Brain of Drosophila

    Get PDF
    Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore