93 research outputs found

    Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding

    Get PDF
    A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia ‘Magnolia’. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in ‘Magnolia’ from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The ‘Magnolia’ resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia ‘Trayshed’. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the ‘Magnolia’-based populations, but the allele sizes of the flanking markers were different. ‘Trayshed’ and ‘Magnolia’ shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus termed Ren4 on chromosome 18, which explained 70% of the phenotypic variation in the same region of chromosome 18 found in the two M. rotundifolia resistant accessions. The mapping results indicate that powdery mildew resistance genes from different backgrounds reside on chromosome 18, and that genetic markers can be used as a powerful tool to pyramid these loci and other powdery mildew resistance loci into a single line

    High-throughput 18K SNP array to assess genetic variability of the main grapevine cultivars from Sicily

    Get PDF
    The viticulture of Sicily, for its vocation, is one of the most important and ancient forms in Italy. Autochthonous grapevine cultivars, many of which known throughout the world, have always been cultivated in the island from many centuries. With the aim to preserve this large grapevine diversity, previous studies have already started to assess the genetic variability among the Sicilian cultivars by using morphological and microsatellite markers. In this study, simple sequence repeat (SSR) were utilized to verify the true-to-typeness of a large clone collection (101) belonging to 21 biotypes of the most 10 cultivated Sicilian cultivars. Afterwards, 42 Organization Internationale de la Vigne et du Vin (OIV) descriptors and a high-throughput single nucleotide polymorphism (SNP) genotyping array (Vitis18kSNP) were applied to assess genetic variability among cultivars and biotypes of the same cultivar. Ampelographic traits and high-throughput SNP genotyping platforms provided an accuracy estimation of genetic diversity in the Sicilian germplasm, showing the relationships among cultivars by cluster and multivariate analyses. The large SNP panel defined sub-clusters unable to discern among biotypes, previously classified by ampelographic analysis, belonging to each cultivar. These results suggested that a very large number of SNP did not cover the genome regions harboring few morphological traits. Genetic structure of the collection revealed a clear optimum number of groups for K = 3, clustering in the same group a significant portion of family-related genotypes. Parentage analysis highlighted significant relationships among Sicilian grape cultivars and Sangiovese, as already reported, but also the first evidences of the relationships between Nero d’Avola and both Inzolia and Catarratto. Finally, a small panel of highly informative markers (12 SNPs) allowed us to isolate a private profile for each Sicilian cultivar, providing a new tool for cultivar identification

    Association of genomic domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness

    Get PDF
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. Weevaluated whether PSVs inBRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 30 region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. Significance: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.Peer reviewe

    The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    Get PDF
    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today

    Altered Activation of Innate Immunity Associates with White Matter Volume and Diffusion in First-Episode Psychosis

    Get PDF
    First-episode psychosis (FEP) is associated with inflammatory and brain structural changes, but few studies have investigated whether systemic inflammation associates with brain structural changes in FEP. Thirty-seven FEP patients (median 27 days on antipsychotic medication), and 19 matched controls were recruited. Serum levels of 38 chemokines and cytokines, and cardiovascular risk markers were measured at baseline and 2 months later. We collected T1-and diffusion-weighted MRIs with a 3 T scanner from the patients at baseline. We analyzed the association of psychosis-related inflammatory markers with gray and white matter (WM) volume using voxel-based morphometry and WM diffusion using tract-based spatial statistics with whole-brain and region-of-interest (ROI) analyses. FEP patients had higher CCL22 and lower TGFa, CXCL1, CCL7, IFN-alpha 2 and ApoA-I than controls. CCL22 decreased significantly between baseline and 2 months in patients but was still higher than in controls. The association between inflammatory markers and FEP remained significant after adjusting for age, sex, smoking and BMI. We did not observe a correlation of inflammatory markers with any symptoms or duration of antipsychotic treatment. Baseline CCL22 levels correlated negatively with WM volume and positively with mean diffusivity and radial diffusivity bilaterally in the frontal lobes in ROI analyses. Decreased serum lan association between circulating chemokine levels and WM in FEP patients. Interestingly, CCL22 has been previously implicated in autoimmune diseases associated with WM pathology. The results suggest that an altered activation of innate immunity may contribute to WM damage in psychotic disorders.evel of ApoA-I was associated with smaller volume of the medial temporal WM. In whole-brain analyses, CCL22 correlated positively with mean diffusivity and radial diffusivity, and CXCL1 associated negatively with fractional anisotropy and positively with mean diffusivity and radial diffusivity in several brain regions. This is the first report to demonstratePeer reviewe

    Assessment of young and aged hematopoietic stem cell activity by competitive serial transplantation assays

    No full text
    Healthy hematopoietic stem cells (HSCs) are capable to self-renew and reconstitute the complete hematopoietic system. Upon aging, there is an increased incidence of blood-related diseases. Age-related phenotypes have been widely studied by bone marrow transplantation experiments, where reconstitution of the transplanted cells is a direct measure of HSC activity. In this protocol we describe a competitive bone marrow transplantation assay to functionally test young and old HSCs
    corecore