326 research outputs found
Quantum Storage of Photonic Entanglement in a Crystal
Entanglement is the fundamental characteristic of quantum physics. Large
experimental efforts are devoted to harness entanglement between various
physical systems. In particular, entanglement between light and material
systems is interesting due to their prospective roles as "flying" and
stationary qubits in future quantum information technologies, such as quantum
repeaters and quantum networks. Here we report the first demonstration of
entanglement between a photon at telecommunication wavelength and a single
collective atomic excitation stored in a crystal. One photon from an
energy-time entangled pair is mapped onto a crystal and then released into a
well-defined spatial mode after a predetermined storage time. The other photon
is at telecommunication wavelength and is sent directly through a 50 m fiber
link to an analyzer. Successful transfer of entanglement to the crystal and
back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality by almost three standard deviations (S=2.64+/-0.23). These results
represent an important step towards quantum communication technologies based on
solid-state devices. In particular, our resources pave the way for building
efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref.
[36
Heralded quantum entanglement between two crystals
Quantum networks require the crucial ability to entangle quantum nodes. A
prominent example is the quantum repeater which allows overcoming the distance
barrier of direct transmission of single photons, provided remote quantum
memories can be entangled in a heralded fashion. Here we report the observation
of heralded entanglement between two ensembles of rare-earth-ions doped into
separate crystals. A heralded single photon is sent through a 50/50
beamsplitter, creating a single-photon entangled state delocalized between two
spatial modes. The quantum state of each mode is subsequently mapped onto a
crystal, leading to an entangled state consisting of a single collective
excitation delocalized between two crystals. This entanglement is revealed by
mapping it back to optical modes and by estimating the concurrence of the
retrieved light state. Our results highlight the potential of rare-earth-ions
doped crystals for entangled quantum nodes and bring quantum networks based on
solid-state resources one step closer.Comment: 10 pages, 5 figure
Photonic quantum state transfer between a cold atomic gas and a crystal
Interfacing fundamentally different quantum systems is key to build future
hybrid quantum networks. Such heterogeneous networks offer superior
capabilities compared to their homogeneous counterparts as they merge
individual advantages of disparate quantum nodes in a single network
architecture. However, only very few investigations on optical
hybrid-interconnections have been carried out due to the high fundamental and
technological challenges, which involve e.g. wavelength and bandwidth matching
of the interfacing photons. Here we report the first optical quantum
interconnection between two disparate matter quantum systems with photon
storage capabilities. We show that a quantum state can be faithfully
transferred between a cold atomic ensemble and a rare-earth doped crystal via a
single photon at telecommunication wavelength, using cascaded quantum frequency
conversion. We first demonstrate that quantum correlations between a photon and
a single collective spin excitation in the cold atomic ensemble can be
transferred onto the solid-state system. We also show that single-photon
time-bin qubits generated in the cold atomic ensemble can be converted, stored
and retrieved from the crystal with a conditional qubit fidelity of more than
. Our results open prospects to optically connect quantum nodes with
different capabilities and represent an important step towards the realization
of large-scale hybrid quantum networks
Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis
: EPHPP quality rating scores (DOCX 38 kb
Efficient and long-lived quantum memory with cold atoms inside a ring cavity
Quantum memories are regarded as one of the fundamental building blocks of
linear-optical quantum computation and long-distance quantum communication. A
long standing goal to realize scalable quantum information processing is to
build a long-lived and efficient quantum memory. There have been significant
efforts distributed towards this goal. However, either efficient but
short-lived or long-lived but inefficient quantum memories have been
demonstrated so far. Here we report a high-performance quantum memory in which
long lifetime and high retrieval efficiency meet for the first time. By placing
a ring cavity around an atomic ensemble, employing a pair of clock states,
creating a long-wavelength spin wave, and arranging the setup in the
gravitational direction, we realize a quantum memory with an intrinsic spin
wave to photon conversion efficiency of 73(2)% together with a storage lifetime
of 3.2(1) ms. This realization provides an essential tool towards scalable
linear-optical quantum information processing.Comment: 6 pages, 4 figure
Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden
We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the δ13C and δ15N values for animal references from Västerås. This research (Bäckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD
Observation of Coherent Elastic Neutrino-Nucleus Scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection
for four decades, even though its predicted cross-section is the largest by far
of all low-energy neutrino couplings. This mode of interaction provides new
opportunities to study neutrino properties, and leads to a miniaturization of
detector size, with potential technological applications. We observe this
process at a 6.7-sigma confidence level, using a low-background, 14.6-kg
CsI[Na] scintillator exposed to the neutrino emissions from the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic
signatures in energy and time, predicted by the Standard Model for this
process, are observed in high signal-to-background conditions. Improved
constraints on non-standard neutrino interactions with quarks are derived from
this initial dataset
Reptilian Heart Development And The Molecular Basis Of Cardiac Chamber Evolution
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy(1-3). However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles(4-7)? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors(8,9). In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution
Effects of nutrient addition and soil drainage on germination of N-fixing and non-N-fixing tropical dry forest tree species
To develop generalised predictions regarding the effects of atmospheric nitrogen (N) and phosphorus (P) deposition on vegetation communities, it is necessary to account for the impacts of increased nutrient availability on the early life history stages of plants. Additionally, it is important to determine if these responses (a) differ between plant functional groups and (b) are modulated by soil drainage, which may affect the persistence of added nutrients. We experimentally assessed seed germination responses (germination proportion and germination energy, i.e. time to germination) of commonly occurring N-fixing and non-N-fixing tropical dry forest tree species found in India to simulated N and P deposition in well-drained soils, as well as soils with impeded drainage. When soils were not allowed to drain, germination proportion declined with nutrient addition, while germination energy remained unchanged. Stronger declines in germination proportion were observed for N-fixing species. In free-draining soils, nutrient addition did not affect germination proportion in either functional group. However, we detected a trend of delayed germination with nutrient addition, especially in N-fixers. Our results suggest that nutrient deposition can lead to potential shifts in functional dominance and tree community composition of tropical dry forests in the long term through its effects on early life stages of trees, although the mechanisms underlying the observed germination responses remain unclear. Further, such effects are likely to be spatially variable across the geographic range in which tropical dry forests occur depending on soil drainage properties
Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo
Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio
- …
