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Abstract

To develop generalised predictions regarding the effects of atmospheric nitrogen (N) and 

phosphorus (P) deposition on vegetation communities, it is necessary to account for the impacts of 

increased nutrient availability on the early life history stages of plants. Additionally, it is important 

to determine if these responses (a) differ between plant functional groups and (b) are modulated by 

soil drainage, which may affect the persistence of added nutrients. We experimentally assessed seed 

germination responses (germination proportion and germination energy, i.e. time to germination) of 

commonly occurring N-fixing and non-N-fixing tropical dry forest tree species found in India to 

simulated N and P deposition in well-drained soils, as well as soils with impeded drainage. When 

soils were not allowed to drain, germination proportion declined with nutrient addition, while 

germination energy remained unchanged. Stronger declines in germination proportion were 

observed for N-fixing species. In free-draining soils, nutrient addition did not affect germination 

proportion in either functional group. However, we detected a trend of delayed germination with 

nutrient addition, especially in N-fixers. Our results suggest that nutrient deposition can lead to 

potential shifts in functional dominance and tree community composition of tropical dry forests in 

the long term through its effects on early life stages of trees, although the mechanisms underlying 

the observed germination responses remain unclear. Further, such effects are likely to be spatially 

variable across the geographic range in which tropical dry forests occur depending on soil drainage 

properties.

Introduction

The increased emission and subsequent atmospheric deposition of nitrogen (N) and phosphorus (P) 

compounds as a direct consequence of human activities have resulted in the fertilisation of 

ecosystems across the globe (Falkowski et al. 2000; Galloway et al. 2004, 2008). Evidence from 

numerous experimental, observational and simulation studies have demonstrated that these 



increases in plant available nutrients have the potential to effect considerable changes in vegetation 

communities, from altered individual plant growth to changes in community composition and 

diversity, as well as ecosystem productivity and function (Aerts et al. 1992; Holland et al. 1997; 

Stevens et al. 2004; Waldrop et al. 2004; Wassen et al. 2005; Elser et al. 2007; Vitousek et al. 2010; 

La Pierre and Smith 2014). With the current increases in atmospheric N and P deposition, and the 

absence of strategies to mitigate imminent future acceleration in these rates, quantifying the 

potential responses of vegetation communities to increased N and P availability is critical for the 

effective assessment of future vegetation trajectories.

Much of our current knowledge of the effects of increased nutrient availability on vegetation comes 

from studies conducted in temperate ecosystems (Matson et al. 1999; Siddique et al. 2010). 

Considerable gaps exist in our understanding of how tropical ecosystems will respond to this global 

change driver (Bobbink et al. 2010; Lu et al. 2010). Additionally, while studies have evaluated the 

impacts of nutrient addition on community-level processes, especially for the juvenile and adult 

stages of plants (e.g. Aerts et al. 1990; Rainey et al. 1999; Bedison and McNeil 2009; Venterink and

Güsewell 2010), most do not explicitly account for potential changes in the earliest life history 

stage, i.e. germination. Changes in seed germination with fertilisation have the potential to affect 

the number, composition and relative abundances of individuals upon which post-germination 

community-level processes can act. Therefore, assessing the effects of nutrient deposition on the 

early post-reproductive stages of plants, such as germination, is important in quantifying the mid- to

long-term impacts of N and P deposition on ecosystems (Ackerly and Bazzaz 1995; Callahan et al. 

2008). Although water availability (Khurana and Singh 2004; Renzhong and Qiong 2004; 

Ronnenberg et al. 2008), temperature (Ronnenberg et al. 2008; Milbau et al. 2009), soil properties 

(Roem et al. 2002) and the intensity, as well as quality of available light (Metcalfe 1996; Broncano 

et al. 1998; Holl et al. 2000; Ceccon et al. 2003; Luna and Moreno 2009), are all well recognised as 

important determinants of germination success, the role of nutrient availability remains poorly 

quantified. As a considerable fraction of a seed’s mass is made up of stored carbohydrate and 



nutrient reserves (Fenner and Thompson 2005), it can be argued that the availability of nutrients in 

the germination media or environment may have only a minimal effect, if any on germination 

success (e.g. Broncano et al. 1998; Roem et al. 2002). However, studies have shown that N and P 

addition can influence seed germination. These effects can be positive (Benech-Arnold et al. 2000; 

Plassmann et al. 2008) or negative (Carter 1967; Pesch and Pieterse 1982; Radford et al. 1989; 

Kraaij and Ward 2006; Haden et al. 2011a, b) and further, can be dependent on plant species and 

functional type (Ceccon et al. 2003; Sweeney et al. 2008; Ochoa-Hueso and Manrique 2010; Basto 

et al. 2015).

Many studies use germination proportion as an indicator of germination success. However, 

germination proportion may not be the only indicator of potential alterations to plant communities 

as a result of nutrient addition. Germination energy, which is a metric describing the rate of 

germination, can also play an important role. For example, lower germination energy, which 

translates to delayed germination, could result in new individuals germinating into an environment 

where other, unaffected species have already established, thus limiting local resource availability for

the new germinants. Additionally, in strongly seasonal ecosystems with a distinct growing season, 

delayed germination may translate to less time for growth (Vargas et al. 2015). Therefore, a 

combined assessment of changes in both germination proportion (Gp hereafter) and germination 

energy (Gt hereafter) can provide more ecologically relevant interpretations of the consequences of 

nutrient deposition than interpretations based on either parameter alone.

We assessed the effects of N and P fertilisation on germination proportion and energy in multiple 

tropical dry forest tree species commonly found in India. Tropical dry forests are of both regional 

and global importance (Murphy and Lugo 1986; Powers and Tiffin 2010; McShea and Davies 

2011), and, in India, they represent the country’s largest forest type in terms of land cover (MoEF 

1999). They are of great value in terms of biodiversity as well as human utility of the landscape for 

a number of ecosystem services, and it is, therefore, crucial to assess the possible effects that 



nutrient deposition may have on this ecosystem. To our knowledge, there are currently no studies 

which assess germination responses of the tree community of tropical dry forests in India which can

be generalised at the scale of the ecosystem.

This study assessed how seed germination responses to N and P deposition differed between two 

functional groups, i.e. N-fixers and non-N-fixers, both of which are prevalent in the tree 

communities of dry forests. Although N-fixing tropical dry forest species have been shown to have 

greater germination success and energy when compared to non-N-fixers (Vargas et al. 2015), the 

effects of enhanced nutrient deposition on the germination success of dry forest species belonging 

to these different functional groups remain unknown. Additionally, we sought to quantify if 

observed responses to nutrient addition were contingent on soil drainage properties.

Tropical dry forests have an extensive range in southern and central India, encompassing substantial

topographic variation. Widespread and common tree species thus experience varying conditions of 

soil drainage during germination. By influencing rates of nutrient leaching (Howarth et al. 1996; 

Sims et al. 1998), soil drainage properties may modulate the duration of exposure and, therefore, the

effects of added nutrients on seed germination. Assessing the variation in these effects can, 

therefore, provide insights into how tropical dry forest vegetation will respond to nutrient deposition

across their geographic range.

Materials and methods

Species selection

Commonly occurring N-fixing and non-N-fixing tropical dry forest tree species from central and 

southern India were selected from published literature (e.g. Puyravaud et al. 1994; Sagar and Singh 

2004; Kumar and Shahabuddin 2005; Kodandapani et al. 2008). Nodulation behaviour for all N-

fixing species was confirmed using the Germplasm Resource Information Network database 



(GRIN; http://www.ars-grin.gov/). Of the 19 species chosen for this study, the 10 N-fixing species 

belonged to a single family (Fabaceae), while the nine non-N-fixers represented eight families from 

seven orders. Seeds for each species were procured from a commercial supplier and were harvested 

no more than 6 months prior to the start of the experiments. Following procurement, all seeds were 

stored in cool, dry and dark conditions until the start of the experiments.

Experiment 1: Undrained germination medium

Seeds of eight tree species including four N-fixers (Acacia ferruginea DC., Albizia amara (Roxb.) 

B.Biovin, Albizia lebbeck (L.) Benth. and Dalbergia latifolia Roxb.) and four non-N-fixers 

(Sapindus emarginatus Vahl., Shorea robusta Gaertn., Terminalia arjuna (Roxb. ex DC.) Wight and 

Arn. and Ziziphus jujuba Mill.) were chosen for this study. The experiment was carried out in 15-

cm-diameter food-grade plastic containers containing 150 g of sieved 1:1 sand and soil mixture.

The experiment consisted of five treatment combinations—a control (no nutrient addition) and a 

factorial combination of two levels of N (1 g m−2 N and 2 g m−2 N) and P (0.1 g m−2 P and 0.2 g 

m−2 P) addition. The two levels for each nutrient represent estimates of current and future 

deposition rates (expected by approximately 2030) as reported by Dentener et al. (2006) and 

Mahowald et al. (2008) for N and P, respectively. For convenience, we refer to these treatment 

combinations as follows: control (N0P0), low nitrogen–low phosphorus (NLPL), low nitrogen–high

phosphorus (NLPH), high nitrogen–low phosphorus (NHPL) and high nitrogen–high phosphorus 

(NHPH). N and P were added to the germination media as a solution of urea and single 

superphosphate (SSP; Ca(H2PO4)2·H2O), respectively, dissolved in distilled water. The amounts of 

nutrients to be added for different treatments were calculated based on the cross-sectional area of 

the germination containers (i.e. 0.018 m2). The control treatment only received distilled water. 

Nutrient solutions were added to germination containers as a one-time application at the start of the 



experiment, simulating a pulse of wet deposition during the first rains of the wet season, which 

coincides with the time when species typically germinate. The total amount of liquid (water and/or 

nutrient solution) totalled 50 ml per germination container. Each germination container contained 

10 seeds of a single species, with six replicates for each species–treatment combination (N = 240 

germination containers in total). Each germination container was covered with a lid that allowed for

ventilation through three 0.5-cm-diameter holes. The experiment was carried out within a laboratory

setting (at the National Centre for Biological Sciences (NCBS), Bangalore, India), with temperature

ranging between 20 and 30 °C and ambient light conditions with approximately 12-h day–night 

cycle.

The experiment ran for a period of 45 days, between May and June, 2012. Data were collected daily

for the first 14 days, on alternate days for the next 22 days, and every third day for the remainder of 

the experiment. On data collection days, each germination container was scored for the total number

of seeds germinated. We used radicle emergence as the criterion for germination success. 

Throughout the experiment, moisture content of the germination media was maintained at a 

saturated, but not inundated, level. At each sampling period, one germination container for each 

species was picked at random and tilted to observe if a film of water accumulated at the edge of the 

container. If the film of water did not form, 5 ml of distilled water was added to all germination 

containers for that species. The germination medium was not allowed to drain. Therefore, the loss 

of moisture could be attributed solely to evaporation via the ventilation holes on the lid of 

germination containers.

Experiment 2: Free-draining germination medium

This experiment used a set of nine N-fixers (Acacia catechu (L.f.) Willd., Acacia ferruginea DC., 

Acacia nilotica (L.) Delile, Albizia amara (Roxb.) B.Biovin., Acrocarpus fraxinifolius Arn., 

Bauhinia purpurea L., Butea monosperma (Lam.) Taub., Dalbergia latifolia Roxb. and Pongamia 



pinnata (L.) Pierre) and seven non-N-fixers (Hardwickia binata Roxb., Lagerstroemia indica L., 

Lagerstroemia speciosa (L.) Pers., Phyllanthus emblica L., Terminalia arjuna (Roxb. ex DC.) 

Wight and Arn.), Wrightia tinctoria R.Br. and Ziziphus jujuba Mill.).

The experiment was carried out in the same 15-cm-diameter food-grade plastic containers as were 

used for experiment 1. However, in this case, 300 g of a sieved 1:1 sand and soil mixture was used 

as the germination medium within each container. In contrast to experiment 1, the germination 

containers were not covered with a lid. Also, to allow the germination media to drain, outlet holes 

were drilled into the underside of each container.

Nutrient treatments consisted of factorial combinations of three levels of N (NO = 0 g m−2 N, NL = 

2 g m−2 N and NH = 4 g m−2 N) and P (PO = 0 g m−2 P, PL = 0.2 g m−2 P and PH = 0.4 g m−2 P) 

addition as dissolved urea and SSP, respectively. On an area basis, NH and PH represent a doubling 

of N and P addition from those used in experiment 1. However, as experiment 2 used twice the 

volume of soil, the concentrations of N and P represented in these treatments are identical to those 

in experiment 1. Germination containers received a total of 50 ml of water and/or nutrient solutions 

at the start of the experiment. Similar to experiment 1, each germination container contained 10 

seeds of a single species and each species–treatment combination was represented by six replicates, 

totalling 846 germination containers across the experiment. Running for a total of 50 days between 

October and December, 2013, data collection (i.e. number of seeds germinated in each germination 

container) was conducted daily for the first 12 days, on alternate days for the next 18 days and 

every third to fourth day for the remainder of the experiment. The experiment was carried out in a 

greenhouse at the NCBS campus. Temperature and relative humidity of the greenhouse were 

maintained at 28 °C and 60 %, respectively, for the duration of the experiment, with ambient light 

conditions and approximately 12-h day–night cycle. The greenhouse fogger system was used to 

supply germination containers with water.

To promote germination, seeds used in both experiments were soaked in distilled water at room 



temperature for a period of 36 h. prior to the start of the experiments. The pretreatment method and 

duration was informed by preliminary work carried out to identify a single pretreatment method 

sufficient to initiate germination across all species.

Data analysis

Gp was quantified as the proportion of seeds in each container that had germinated by the end of 

each experiment (45 and 50 days for experiments 1 and 2, respectively). For Gt, which represents 

germination energy, a single cumulative germination curve over time was constructed for each 

species–treatment combination by summing the number of seeds germinated in all six replicates for 

each experiment. We then estimated the time point (in days) at which 50 % (of total germination) of

seeds in that species–treatment combination were observed to have germinated.

As a combined assessment of changes in germination proportion and energy can provide more 

ecologically meaningful interpretations of nutrient-mediated changes in germination, we propose a 

framework (Fig. 1) where Gp and Gt are interpreted simultaneously. Using log response ratios 

(LRRs) of Gp (LGp) and Gt (LGt), the response space can be divided into four quadrants centred 

around zero (representing no difference from the control treatment). Positive values of LGp with 

nutrient addition indicate an increase in germination proportion with respect to the control, while 

negative values indicate a decline. For LGt, negative values indicate earlier germination, while 

positive values suggest a delay. Following nutrient addition, a plant species or functional group that 

populates the upper left quadrant (quadrant II, where LGp > 0 and LGt < 0) stands to gain a distinct 

advantage ecologically, as it shows higher proportions and faster rates of germination. On the other 

hand, species or functional groups that populate the lower right of the response space (quadrant IV, 

where LGp < 0 and LGt > 0) may be at a disadvantage since they have a lower number of seeds 

germinating, which additionally take longer to germinate.



Fig. 1 Framework for the combined interpretation of changes in germination proportion and
germination energy



As germination containers were not paired in either of the experiments, the LRR of Gp (LGp) for 

each functional group–treatment combination was calculated using a meta-analysis framework 

outlined by Hedges et al. (1999). This method accounts for and incorporates the variation between 

replicates, yielding mean LRRs and 95 % confidence intervals (CIs) which are weighted by within-

species as well as between-species variability in responses. However, we note that when calculated 

for small sample sizes, the probability content of CIs could be as low as 91 % (Hedges et al. 1999). 

LRR of Gt (LGt) was calculated such that for a given species–treatment combination, LGt = 

ln(Gttreatment / Gtcontrol). LGt values for species were pooled by functional group to calculate the 

mean LGt for each treatment level as well as their associated 95 % CIs for N-fixers and non-N-

fixers separately.

Using the framework outlined in Fig. 1, LGp and LGt values were plotted against each other 

(aggregated by plant functional group) to facilitate interpretation of germination responses using 

both these germination parameters simultaneously.

All statistical inferences in this study are based on the interpretation of calculated 95 % CIs around 

LRRs. LRRs of treatments where CIs do not overlap with zero are deemed to display strong 

differences in germination parameters from their respective controls. However, LRRs where 95 % 

CIs overlap with zero may also represent biologically meaningful changes in germination 

parameters and, hence, we do not assume a complete lack of nutrient-mediated effects. In scenarios 

where consistent (e.g. unidirectional) patterns of change in seed germination parameters are 

observed across nutrient treatments, but where 95 % CIs span zero, we report counternull values in 

addition to effect sizes as advocated by a number of authors (Rosenthal and Rubin 1994; Stephens 

et al. 2007; Rinella and James 2010). According to convention, we report counternull values which 

are two times the mean effect size. As an example, for a particular nutrient treatment, we may 

observe an LGp value of −0.6 (45 % decline in germination proportion relative to control) 

associated with 95 % CIs which range from 0.1 (10 % increase in germination) to −1.4 (75 % 



decline in germination). The counternull value in this case is −1.2 (70 % decline in germination) 

and has the same amount of support as a response ratio value of 0, i.e. no difference from control. 

Therefore, the counternull value represents the non-null effect size which has as much statistical 

support as the null hypothesis of no change, and circumvents a common error in null hypothesis 

significance testing, where failure to reject the null hypothesis is equated with an effect size of zero 

(Rosenthal and Rubin 1994).

All analyses described here were carried out using R, version 3.0.2 (The R Foundation of Statistical 

Computing Platform 2013).

Results

Experiment 1: Undrained germination medium

N-fixers displayed strong declines in germination proportion across all nutrient treatments (i.e. 

negative LGp values with CIs that do not overlap zero) relative to controls (Fig. 2a; Supplementary 

Table S1). The strongest reductions were recorded for the NHPH treatment (−87.4 %), followed by 

the NHPL (−75.7 %), NLPH (−60 %) and NLPL (−50.5 %) treatments.

A reduction in germination proportion was also observed in non-N-fixers across all nutrient addition

treatments, but these were not as strong as those observed in the N-fixers, with 95 % CIs spanning 

zero in all cases (Fig. 2b; Supplementary Table S1). However, effect sizes and associated 

counternull values suggest that the declines in germination proportion were large enough to be 

potentially biologically relevant. As with N-fixers, the strongest declines in germination proportion 

for non-N-fixers were recorded for the NHPH treatment (−68 %, counternull = −90 %), followed by

the NHPL (−43 %, counternull = −68 %), NLPH (−35 %, counternull = −57 %) and NLPL (−34 %, 

counternull = −56 %).



Fig. 2 Log response ratios representing changes in germination proportion (LGp) with nutrient
addition in undrained soils for (a) N-fixers, (b) non-N-fixers and (c) all eight species combined.

Error bars represent 95 % CIs around log response ratios. Asterisks (*) indicate treatment
combinations where 95 % CIs do not overlap with 0



Fig. 3 Germination proportion (LGp) and germination energy (LGt) response space for undrained
soils with nutrient addition. Non-N-fixers and N-fixers are represented by light and heavy plotting

characters, respectively. For clarity, 95 % CIs around log response ratios are reported in
supplementary Table S1

Similar patterns of reduced germination proportion were also observed when LGp values were 

calculated across all eight species used in the experiment (Fig. 2c; Supplementary Table S1). While 

the strongest declines in germination proportion were observed for the NHPH treatment (−82 %), 

CIs for the remaining three treatments spanned zero (NHPL = −63 %, counternull= −86 %; NLPH =

−46 %, counternull = −71 %; NLPL = −44 %, counternull = −68 %).

There was no effect of nutrient addition on germination energy. Species were highly variable in 

their responses. Mean LGt values clustered around zero (Fig. 3) and CIs for all species combined, 



as well as for species pooled by functional groups, spanned zero (Supplementary Table S1).

Experiment 2: Free-draining germination medium

Nutrient addition treatments in free-draining soils did not elicit a response in either functional group

with respect to germination proportion (Fig. 4; Supplementary Table S2). LGp values clustered 

close to zero, CIs were large and spanned zero in all cases and we failed to detect a discernible 

pattern in the direction of nutrient-mediated effects. At the species level, LGp values were 

associated with high variability, and although eight species–treatment combinations did show strong

differences from control treatments, no consistent pattern was detected.

Fig. 4 Germination proportion (LGp) and germination energy (LGt) response space for free-
draining soils with nutrient addition. Non-N-fixers and N-fixers are represented by light and heavy

plotting characters, respectively. For clarity, 95 % CIs around log response ratios are reported in
Supplementary Table S2



In terms of LGt, nutrient addition resulted in high variation in germination energy for both 

functional groups across all treatments. Ninety-five percent CIs overlapped zero in all cases, except 

the NLPO treatment in non-N-fixers (2 g m−2 N and no P addition) which showed a strong delay 

(13 %) in germination. Mean LGt values tended to cluster on the positive side of the LGt axis (Fig. 

4; Supplementary Table S2), suggestive of an overall trend towards delayed germination. N-fixers 

displayed a stronger trend of delayed germination (24 %, counternull = 53 %) when averaged over 

all nutrient amendment treatments compared to non-N-fixers (6 %, counternull = 13 %). Across all 

species, germination was delayed by approximately 15 % (counternull = 34 %) when averaged over

all nutrient addition treatments.

Discussion

From our experiments, we observe that in poorly draining soils, or when soils remain saturated for 

long periods of time, N and P addition to the germination medium resulted in a consistent decline in

germination proportion for both functional groups, but had no effect on germination energy. While 

we detected stronger declines in germination proportion for N-fixing species, the magnitude of 

these declines in non-N-fixers, though weaker, may still be biologically meaningful. In well-drained

soils, germination proportion was not affected by nutrient addition. However, we detected a trend of

lower germination energy, with N-fixers showing greater delays in germination than non-N-fixers.

Our results suggest that in poorly draining soils, increased N and P deposition may result in 

community-level shifts in the recruiting tree community favouring non-N-fixing species. Further, 

these community-level changes may occur in conjunction with reduced seed germination in general,

especially with high levels of N and P deposition. In well-drained soils, although we did not detect a

change in germination proportion with nutrient addition, N and P addition could potentially result in

community-level shifts in recruitment favouring non-N-fixers due to a stronger trend of delayed 

germination observed in N-fixers. We interpret these results from well-drained soils with caution, as



responses were highly variable and associated with large confidence intervals. The detected trend of

lower germination energy implies that new individuals may germinate into a community where 

potential competitors may have already germinated and would, therefore, be better equipped to 

exploit local resource availability. On account of the greater delays we observe in N-fixing species, 

individuals of this functional group may be more adversely affected than non-N-fixers, potentially 

resulting in shifts in functional diversity as post-germination community interactions are realised. 

However, we also note that our metric of change in germination energy is represented as a 

percentage. Therefore, species with an inherently fast germination time may not be adversely 

affected by the magnitude of germination delays we have quantified. For example, fast germinating 

species such as D. latifolia and B. monosperma may only see a germination delay of approximately 

0.5 days, on average, with nutrient addition, while the relatively slower germinating A. fraxinifolius 

may show an average delay of 2.5 days (see Supplementary Tables S3, S4).

Previous studies from a diversity of ecosystems have reported a range of responses of seed 

germination proportion to nutrient availability in the germination medium. Some of these results 

have been consistent with our observations in poorly draining soils. In a study that assessed the role 

of N fertilisation in controlling bush encroachment in African savannas, Kraaij and Ward (2006) 

reported a strong reduction of germination proportion in Acacia mellifera seeds when exposed to 

nitrogen addition. In agricultural research, Haden et al. (2011a, b) demonstrated the negative 

influence of urea on germination of rice. Similarly, N additions in the form of urea, and to a lesser 

extent P additions as superphosphate, were reported to reduce germination in 10 crop and fodder 

species (Carter 1967). The role of N addition in reducing seed germination has also been proposed 

as a control measure for agricultural weeds (Pesch and Pieterse 1982; Dzomeku and Murdoch 2007)

and parasitic plants (Irmaileh 1994). On the other hand, a number of studies have also reported no 

change in germination proportion with nutrient addition (Broncano et al. 1998; Roem et al. 2002), 

as well as stimulation, resulting in an increase in germination (Benech-Arnold et al. 2000; 

Plassmann et al. 2008).



Overall, the effects of nutrient availability on seed germination appear to be strongly contingent on 

species identity and functional group (Davis 2007; Ochoa-Hueso and Manrique 2010), and the 

mechanisms which bring about these differential changes in germination are currently not clear. 

Although the selected non-N-fixing species in these experiments were more phylogenetically 

diverse than the N-fixers, variability in responses to fertilisation was comparable between the two 

functional groups (Supplementary Tables S1, S2). The observed differences between N-fixers and 

non-N-fixers are thus unlikely to be a consequence of greater phylogenetic relatedness between N-

fixers when compared to non-N-fixers.

Ochoa-Hueso and Manrique (2010) suggest that potential mechanisms of nutrient-mediated changes

in germination could be categorised broadly into classes, such as signal effect, toxicity and 

microbial activity. Signal effects are instances when nutrient availability acts as a cue for 

germination. These can either be stimulatory, as proposed for both nitrate (Luna and Moreno 2009) 

and phosphate (Bell et al. 1993), whose availability increases in the soil after fires and may signal 

favourable germination conditions, or inhibitory cues, as observed for ammonium and phosphate in 

clover broomrape seeds (Yoneyama et al. 2001). By far, reductions in germination with nutrient 

addition have largely been attributed to toxicity, especially with respect to added N in the form of 

ammonia or urea (Bremner 1995), which itself dissociates to release ammonium. The level of 

nutrient supply can also have a strong bearing on germination, such that low to intermediate levels 

of N addition can stimulate germination, but high dosages can result in toxicity and reduced 

germination (Pérez-Fernández and Rodríguez-Escheverría 2003; Luna et al. 2007). Mechanisms 

invoking microbial activity involve a more indirect role of nutrients. Here, addition of nutrients to a 

germination medium that is severely nutrient limited stimulates the soil microbial community which

then decompose seeds as they provide a rich source of carbon (Bell et al. 1993; Chee-Sanford et al. 

2006; Davis 2007).

The contrasting changes we observe in germination parameters under poorly draining and free-



draining soils reveal the importance of examining the interaction between nutrient deposition and 

soil properties on germination and other life history stages of plants. Few previous studies have 

investigated the combined effects of nutrient addition and soil drainage on germination, and the 

reasons underlying the patterns we observe in this study remain unclear. Given that added nutrients 

may persist for longer in poorly drained soils (Howarth et al. 1996; Sims et al. 1998), we suggest 

two potential mechanisms for differences in germination response as a function of soil drainage. 

These include (1) direct toxicity of nutrients leading to seed mortality and (2) a temporary arrest of 

germination due to unfavourable conditions in the presence of nutrients. In poorly draining soils, 

added nutrients could have persisted in the germination medium for the duration of the experiment, 

with some losses through volatilisation. This chronic exposure to nutrients may have caused seed 

mortality through toxicity as described in other studies (e.g. Bremner 1995), resulting in lower 

germination proportions. In free-draining soils, the lack of a response in germination proportion 

may stem from a reduction in exposure duration of seeds to the added nutrients as a result of their 

rapid depletion from the medium through leaching, coupled with volatilisation. On the other hand, 

the observed trends of delayed germination in nutrient-amended treatments in free-draining soils, 

which were not manifested in undrained soils, suggest that nutrient addition may result in 

unfavourable conditions, leading to an arrest of germination. In poorly draining soils, these 

unfavourable conditions would have persisted for the duration of the experiment, and seed mortality

may have occurred indirectly due to other processes, such as decomposition of seeds through fungal

or microbial activity (Bell et al. 1993; Chee-Sanford et al. 2006; Davis 2007) in the moist 

germination medium. In free-draining soils, nutrient addition would have created similar 

unfavourable conditions for germination only at the initial stages of the experiment. However, more

favourable conditions may have been restored over time as nutrients leached out of the germination 

medium, resulting in delayed germination.

In summary, N-fixers and non-N-fixers may be affected differently by atmospheric N and P 

deposition, and soil drainage properties may be important in modulating these effects. With N-fixers



potentially suffering greater declines in germination proportion in poorly drained soils and a trend 

of delayed germination in well-drained soils, the hypothesised advantage of N-fixers at the 

germination stage (Vargas et al. 2015) may be diluted. This could result in a shift in functional 

dominance of the recruiting tree community in tropical dry forests. However, our current 

understanding of the mechanisms resulting in these differences, especially those observed between 

N-fixers and non-N-fixers, is limited and warrants further study. Future work should also consider 

the role of soil textural differences, and the associated changes in soil drainage and fertility, in 

mediating germination responses to enhanced nutrient availability. Lastly, whether patterns 

observed at the seed germination stage persist and are maintained through post-germination life 

history stages up to reproductive maturity remains unclear, requiring empirical support that takes 

into consideration competitive interactions as well as disturbance regimes, both of which play 

important roles in shaping tree communities in this ecosystem.
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