11 research outputs found

    Small

    Get PDF
    Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    Nanocatalytic activity of clean-surfaced, faceted nanocrystalline gold enhances remyelination in animal models of multiple sclerosis.

    Get PDF
    Development of pharmacotherapies that promote remyelination is a high priority for multiple sclerosis (MS), due to their potential for neuroprotection and restoration of function through repair of demyelinated lesions. A novel preparation of clean-surfaced, faceted gold nanocrystals demonstrated robust remyelinating activity in response to demyelinating agents in both chronic cuprizone and acute lysolecithin rodent animal models. Furthermore, oral delivery of gold nanocrystals improved motor functions of cuprizone-treated mice in both open field and kinematic gait studies. Gold nanocrystal treatment of oligodendrocyte precursor cells in culture resulted in oligodendrocyte maturation and expression of myelin differentiation markers. Additional in vitro data demonstrated that these gold nanocrystals act via a novel energy metabolism pathway involving the enhancement of key indicators of aerobic glycolysis. In response to gold nanocrystals, co-cultured central nervous system cells exhibited elevated levels of the redox coenzyme nicotine adenine dinucleotide (NAD+), elevated total intracellular ATP levels, and elevated extracellular lactate levels, along with upregulation of myelin-synthesis related genes, collectively resulting in functional myelin generation. Based on these preclinical studies, clean-surfaced, faceted gold nanocrystals represent a novel remyelinating therapeutic for multiple sclerosis

    Mechanistic Basis of the Inhibition of Type II Dehydroquinase by (2S)- and (2R)-2-Benzyl-3-dehydroquinic Acids

    Get PDF
    The structural changes caused by the substitution of the aromatic moiety in (2S)-2-benzyl-3-dehydroquinic acids and its epimers in C2 by electron-withdrawing or electron-donating groups in type II dehydroquinase enzyme from M. tuberculosis and H. pylori has been investigated by structural and computational studies. Both compounds are reversible competitive inhibitors of this enzyme, which is essential in these pathogenic bacteria. The crystal structures of M. tuberculosis and H. pylori in complex with (2S)-2-(4-methoxy)benzyl- and (2S)-2-perfluorobenzyl-3-dehydroquinic acids have been solved at 2.0, 2.3, 2.0, and 1.9 Å, respectively. The crystal structure of M. tuberculosis in complex with (2R)-2-(benzothiophen-5-yl)methyl-3-dehydroquinic acid is also reported at 1.55 Å. These crystal structures reveal key differences in the conformation of the flexible loop of the two enzymes, a difference that depends on the presence of electron-withdrawing or electron-donating groups in the aromatic moiety of the inhibitors. This loop closes over the active site after substrate binding, and its flexibility is essential for the function of the enzyme. These differences have also been investigated by molecular dynamics simulations in an effort to understand the significant inhibition potency differences observed between some of these compounds and also to obtain more information about the possible movements of the loop. These computational studies have also allowed us to identify key structural factors of the H. pylori loop that could explain its reduced flexibility in comparison to the M. tuberculosis loop, specifically by the formation of a key salt bridge between the side chains of residues Asp18 and Arg20Financial support from the Xunta de Galicia (10PXIB2200122PR and GRC2010/12) and the Spanish Ministry of Science and Innovation (SAF2010-15076 to CGB and BFU2008-01588/BMC to M.J.vR.) is gratefully acknowledged. L.T., A.P., and V.F.V.P. thank the Spanish Ministry of Science and Innovation for FPU fellowships and the Portuguese Fundaca̧o para a Ciencia e a Tecnologia for an FCT fellowship, respectively. J.M.O. thanks the Xunta de Galicia and Spanish Ministry of Science and Innovation for “Ángeles Alvariño” and “José Castillejo” fellowships, respectivelyS

    International Investment Law and the Republic of Ecuador: From Arbitral Bilateralism to Judicial Regionalism

    No full text
    corecore