1,084 research outputs found
Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code
A fundamental requirement for enabling fault-tolerant quantum information
processing is an efficient quantum error-correcting code (QECC) that robustly
protects the involved fragile quantum states from their environment. Just as
classical error-correcting codes are indispensible in today's information
technologies, it is believed that QECC will play a similarly crucial role in
tomorrow's quantum information systems. Here, we report on the first
experimental demonstration of a quantum erasure-correcting code that overcomes
the devastating effect of photon losses. Whereas {\it errors} translate, in an
information theoretic language, the noise affecting a transmission line, {\it
erasures} correspond to the in-line probabilistic loss of photons. Our quantum
code protects a four-mode entangled mesoscopic state of light against erasures,
and its associated encoding and decoding operations only require linear optics
and Gaussian resources. Since in-line attenuation is generally the strongest
limitation to quantum communication, much more than noise, such an
erasure-correcting code provides a new tool for establishing quantum optical
coherence over longer distances. We investigate two approaches for
circumventing in-line losses using this code, and demonstrate that both
approaches exhibit transmission fidelities beyond what is possible by classical
means.Comment: 5 pages, 4 figure
Experimental estimation of the dimension of classical and quantum systems
An overwhelming majority of experiments in classical and quantum physics make
a priori assumptions about the dimension of the system under consideration.
However, would it be possible to assess the dimension of a completely unknown
system only from the results of measurements performed on it, without any extra
assumption? The concept of a dimension witness answers this question, as it
allows one to bound the dimension of an unknown classical or quantum system in
a device-independent manner, that is, only from the statistics of measurements
performed on it. Here, we report on the experimental demonstration of dimension
witnesses in a prepare and measure scenario. We use pairs of photons entangled
in both polarization and orbital angular momentum to generate ensembles of
classical and quantum states of dimensions up to 4. We then use a dimension
witness to certify their dimensionality as well as their quantum nature. Our
results open new avenues for the device-independent estimation of unknown
quantum systems and for applications in quantum information science.Comment: See also similar, independent and jointly submitted work of J. Ahrens
et al., quant-ph/1111.127
First analysis of anisotropic flow with Lee--Yang zeroes
We report on the first analysis of directed and elliptic flow with the new
method of Lee--Yang zeroes. Experimental data are presented for Ru+Ru reactions
at 1.69 AGeV measured with the FOPI detector at SIS/GSI. The results obtained
with several methods, based on the event-plane reconstruction, on Lee--Yang
zeroes, and on multi-particle cumulants (up to 5th order) applied for the first
time at SIS energies, are compared. They show conclusive evidence that
azimuthal correlations between nucleons and composite particles at this energy
are largely dominated by anisotropic flow.Comment: 5 pages, 3 figures, submitted to Phys. Rev. C Rapid Co
Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands
to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—
EEG), which is processed while they perform specific mental tasks. While very
promising, MI-BCIs remain barely used outside laboratories because of the difficulty
encountered by users to control them. Indeed, although some users obtain good control
performances after training, a substantial proportion remains unable to reliably control an
MI-BCI. This huge variability in user-performance led the community to look for predictors of
MI-BCI control ability. However, these predictors were only explored for motor-imagery
based BCIs, and mostly for a single training session per subject. In this study, 18 participants
were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2
of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships
between the participants’ BCI control performances and their personality, cognitive
profile and neurophysiological markers were explored. While no relevant relationships with
neurophysiological markers were found, strong correlations between MI-BCI performances
and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive
model of MI-BCI performance based on psychometric questionnaire scores was proposed.
A leave-one-subject-out cross validation process revealed the stability and reliability of this
model: it enabled to predict participants’ performance with a mean error of less than 3
points. This study determined how users’ profiles impact their MI-BCI control ability and
thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of
each user
Income in Adult Survivors of Childhood Cancer.
INTRODUCTION: Little is known about the impact of childhood cancer on the personal income of survivors. We compared income between survivors and siblings, and determined factors associated with income. METHODS: As part of the Swiss Childhood Cancer Survivor Study (SCCSS), a questionnaire was sent to survivors, aged ≥18 years, registered in the Swiss Childhood Cancer Registry (SCCR), diagnosed at age 4'500 CHF), even after we adjusted for socio-demographic and educational factors (OR = 0.46, p<0.001). Older age, male sex, personal and parental education, and number of working hours were associated with high income. Survivors of leukemia (OR = 0.40, p<0.001), lymphoma (OR = 0.63, p = 0.040), CNS tumors (OR = 0.22, p<0.001), bone tumors (OR = 0.24, p = 0.003) had a lower income than siblings. Survivors who had cranial irradiation, had a lower income than survivors who had no cranial irradiation (OR = 0.48, p = 0.006). DISCUSSION: Even after adjusting for socio-demographic characteristics, education and working hours, survivors of various diagnostic groups have lower incomes than siblings. Further research needs to identify the underlying causes
Cooperative Binding
Molecular binding is an interaction between molecules that results in a stable association between those molecules. Cooperative binding occurs if the number of binding sites of a macromolecule that are occupied by a specific type of ligand is a nonlinear function of this ligand’s concentration. This can be due, for instance, to an affinity for the ligand that depends on the amount of ligand bound. Cooperativity can be positive (supralinear) or negative (infralinear). Cooperative binding is most often observed in proteins, but nucleic acids can also exhibit cooperative binding, for instance of transcription factors. Cooperative binding has been shown to be the mechanism underlying a large range of biochemical and physiological processes
Using population admixture to help complete maps of the human genome
Tens of millions of base pairs of euchromatic human genome sequence, including many protein-coding genes, have no known location in the human genome. We describe an approach for localizing the human genome's missing pieces by utilizing the patterns of genome sequence variation created by population admixture. We mapped the locations of 70 scaffolds spanning four million base pairs of the human genome's unplaced euchromatic sequence, including more than a dozen protein-coding genes, and identified eight large novel inter-chromosomal segmental duplications. We find that most of these sequences are hidden in the genome's heterochromatin, particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed in RNA and have been maintained intact for millions of years while their expression patterns diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge of the locations of these sequences can inform disease association and genome biology studies
The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD. © 2014 Tourette et al
Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.
Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies
The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-Time Observations, First-Light Time, Distance to NGC 4666, and Progenitor Constraints
On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ( mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (), a -band maximum at , a rise time of days, and moderate host--galaxy extinction (). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of corresponding to a distance of Mpc. However, a tip of the red giant branch distance to the host galaxy should be measured to allow ASASSN-14lp to be added to the calibrating sample of Type Ia supernovae. Finally, using our early-time photometric and spectroscopic data along with our derived light curve properties, we rule out red giant secondaries with limits on the radius of a non-degenerate companion as small as for favorable viewing angles and estimates of the explosion time
- …
