252 research outputs found

    Application of Nitrogen and Carbon Stable Isotopes (Ύ15Ν and Ύ13C) to Quantify Food Chain Length and Trophic Structure

    Get PDF
    Increasingly, stable isotope ratios of nitrogen (delta N-15) and carbon (delta C-13) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using delta N-15, and carbon range (CR) using delta C-13, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in delta N-15 ordelta C-13 from source to consumer) between trophic levels and among food chains. delta N-15 discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. delta C-13 discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of delta C-13 as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    Get PDF
    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications

    Calcium-fortified beverage supplementation on body composition in postmenopausal women

    Get PDF
    BACKGROUND: We investigated the effects of a calcium-fortified beverage supplemented over 12 months on body composition in postmenopausal women (n = 37, age = 48–75 y). METHODS: Body composition (total-body percent fat, %Fat(TB); abdominal percent fat, %Fat(AB)) was measured with dual energy x-ray absorptiometry. After baseline assessments, subjects were randomly assigned to a free-living control group (CTL) or the supplement group (1,125 mg Ca(++)/d, CAL). Dietary intake was assessed with 3-day diet records taken at baseline and 12 months (POST). Physical activity was measured using the Yale Physical Activity Survey. RESULTS: At 12 months, the dietary calcium to protein ratio in the CAL group (32.3 ± 15.6 mg/g) was greater than the CTL group (15.2 ± 7.5 mg/g). There were no differences from baseline to POST between groups for changes in body weight (CAL = 0.1 ± 3.0 kg; CTL = 0.0 ± 2.9 kg), %Fat(TB )(CAL = 0.0 ± 2.4%; CTL = 0.5 ± 5.4%), %Fat(AB )(CAL = -0.4 ± 8.7%; CTL = 0.6 ± 8.7%), or fat mass (CAL = 1.3 ± 2.6 kg; CTL = 1.3 ± 2.7 kg). CONCLUSION: These results indicate that increasing the calcium to protein ratio over two-fold by consuming a calcium-fortified beverage for 12 months did not decrease body weight, body fat, or abdominal fat composition in postmenopausal women

    Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments

    Get PDF
    Abstract A range of species exploit anthropogenic food resources in behaviour known as ‘raiding’. Such behavioural flexibility is considered a central component of a species’ ability to cope with human-induced environmental changes. Here, we study the behavioural processes by which raiding male chacma baboons (Papio ursinus) exploit the opportunities and mitigate the risks presented by raiding in the suburbs of Cape Town, South Africa. Ecological sampling and interviews conducted with ‘rangers’ (employed to manage the baboons’ space use) revealed that baboons are at risk of being herded out of urban spaces that contain high-energy anthropogenic food sources. Baboon-attached motion/GPS tracking collars showed that raiding male baboons spent almost all of their time at the urban edge, engaging in short, high-activity forays into the urban space. Moreover, activity levels were increased where the likelihood of deterrence by rangers was greater. Overall, these raiding baboons display a time-activity balance that is drastically altered in comparison to individuals living in more remote regions. We suggest our methods can be used to obtain precise estimates of management impact for this and other species in conflict with people

    HIV-associated bladder cancer: a case series evaluating difficulties in diagnosis and management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic human immunodeficiency virus (HIV) infection is associated with an increased incidence of Non-Acquired Immunodeficiency Syndrome (non-AIDS) defining cancers. To date, only a limited number of cases of bladder cancer have been linked with HIV infection. We sought to describe the clinical characteristics of HIV-associated bladder cancer.</p> <p>Methods</p> <p>A retrospective study was performed involving HIV-positive patients with bladder cancer, combining cases from multiple institutions with published case reports. Data regarding patient demographics, HIV status, clinical presentation, pathology, cancer treatment, and outcome were analyzed using descriptive statistics.</p> <p>Results</p> <p>Eleven patients were identified with a median age of 55 years (range, 33 - 67). The median CD4+ count at cancer diagnosis was 280 cells/mm<sup>3 </sup>(range, 106 - 572 cells/mm<sup>3</sup>). Six patients (55%) had a known risk factor for bladder cancer, and nine (82%) presented with hematuria. Ten patients had transitional cell carcinoma, and most had superficial disease at presentation. Treatment included mainly transurethral resection of bladder tumor followed by a combination of local and systemic therapies. One patient received intravesical bacillus Calmette-GuĂšrin (BCG) without complication. Several patients (55%) were alive following therapy, although many (64%) suffered from local relapse and metastatic disease.</p> <p>Conclusion</p> <p>Bladder cancer is part of the growing list of cancers that may be encountered in patients living longer with chronic HIV-infection. Our patients presented at a younger age and with only mild immunosuppression, however, they experienced an expected course for their bladder cancer. Hematuria in an HIV-infected patient warrants a complete evaluation.</p

    Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past

    Get PDF
    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs

    The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda)

    Get PDF
    Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in ή15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in ή15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published pdf
    • 

    corecore