216 research outputs found

    Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    Get PDF
    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Get PDF
    Background: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90 + liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90 + cells sorted from tumor (CD90 +CSCs) with parallel non-tumorous liver tissues (CD90 +NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings: CD90 + cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90 + cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90 +CSCs and CD90 +NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90 +CSCs and CD90 +NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90 +CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90 +CSCs compared to CD90 +NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90 +CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90 +CSCs in liver tumor tissues. Conclusions/Significance: The identified genes, such as GPC3 that are distinctly expressed in liver CD90 +CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. © 2012 Ho et al.published_or_final_versio

    Antimicrobials: A Global Alliance For Optimizing Their Rational Use In Intra-abdominal Infections (agora)

    Get PDF
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.11NIAID NIH HHS [R01 AI117211

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on three research projects and a list of publications.California Institute of Technology/Jet Propulsion Laboratory Contract 959548National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Grant Contract 958461U.S. Navy - Office of Naval Research Grant N00014-92-J-1616U.S. Navy - Office of Naval Research Grant N00014-92-J-4098Digital Equipment Corporation AGMT DTD 11/16/93Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038MIT Lincoln Laboratory P.O. No. BX-5424U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019DEMACO Agreement 11/15/93Federal Aviation Administration Grant 94-G-007U.S. Army Cold Regions Research and Engineering Laboratory Contract DACA89-93-K-000
    • 

    corecore