81 research outputs found
Including the religious viewpoints and experiences of Muslim students in an environment that is both plural and secular
This paper sets out the context and some main lines of argument about the education of Muslim children in England, including concern over low attainment, over segregation and violent extremism. Three approaches to inclusion of Muslims in mainstream educational settings are identified. The paper describes and assesses the identity-based approach to inclusion common to many English schools using a distinction between permissive and affirmative stances to analyse practice. It proceeds to argue for an epistemology-based approach that makes room for students’ experiential and theological perspectives on the content of their learning
Recommended from our members
Comparative analysis of bones, mites, soil chemistry, nematodes and soil micro-Eukaryotes from a suspected homicide to estimate the post-mortem interval
Criminal investigations of suspected murder cases require estimating the post-mortem interval (PMI, or time after death) which is challenging for longer periods. Here we present the case of human remains found in a Swiss forest. We have used a multidisciplinary approach involving the analysis of bones, soil chemical characteristics, mites and nematodes (by microscopy) and micro-Eukaryotes (by Illumina high throughput sequencing). We analysed soil samples collected beneath the remains of the head, upper and lower body and “control” samples taken a few meters away. The PMI estimated on hair 14C-data via bomb peak radiocarbon dating gave a time range of 1 to 2 years before the finding of the remains on site. Cluster analyses for chemical constituents, nematodes, mites and micro- Eukaryotes revealed two clusters 1) head and upper body and 2) lower body and controls. From mite evidence, we conclude that the body was likely to have been brought to the site after death. However, chemical analyses, nematode community analyses and the analyses of micro-Eukaryotes indicate that decomposition took place at least partly on site. This study illustrates the usefulness of combining several lines of evidence for the study of homicide cases to better calibrate PMI inference tools
Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer
Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations
De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects
Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function
De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects.
Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function
Antithrombotic therapy in diabetes: which, when, and for how long?
Cardiovascular disease remains the main cause of mortality in individuals with diabetes mellitus (DM) and also results in significant morbidity. Premature and more aggressive atherosclerotic disease, coupled with an enhanced thrombotic environment, contributes to the high vascular risk in individuals with DM. This prothrombotic milieu is due to increased platelet activity together with impaired fibrinolysis secondary to quantitative and qualitative changes in coagulation factors. However, management strategies to reduce thrombosis risk remain largely similar in individuals with and without DM. The current review covers the latest in the field of antithrombotic management in DM. The role of primary vascular prevention is discussed together with options for secondary prevention following an ischaemic event in different clinical scenarios including coronary, cerebrovascular, and peripheral artery diseases. Antiplatelet therapy combinations as well as combination of antiplatelet and anticoagulant agents are examined in both the acute phase and long term, including management of individuals with sinus rhythm and those with atrial fibrillation. The difficulties in tailoring therapy according to the variable atherothrombotic risk in different individuals are emphasized, in addition to the varying risk within an individual secondary to DM duration, presence of complications and predisposition to bleeding events. This review provides the reader with an up-to-date guide for antithrombotic management of individuals with DM and highlights gaps in knowledge that represent areas for future research, aiming to improve clinical outcome in this high-risk population
The nexus of human resource management, corporate social responsibility and sustainable performance in upscale hotels: a mixed-method study
PurposeConsidering the significance of the human resource management (HRM) and corporate social responsibility (CSR) relationship, the aim of this research is twofold: first is to measure the cultural differences between HRM, CSR and sustainable performance relationship (study 1) and second is to identify the how HRM instigates CSR and sustainable performance (study 2) in the hospitality industry of UK and Pakistan.Design/methodology/approachA mixed-method approach was used to collect the qualitative and quantitative data from upscale hotels. In Study 1, a multi-respondent and time-lagged strategy was employed to collect the data from 162 Pakistani and 290 UK upscale hotels. In Study 2, in-depth semi-structured interviews were conducted to understand the HRM-CSR-performance nexus.FindingsThe results of Study 1 highlight the significant cultural differences in the relationships of HRM-CSR-performance, while Study 2 explains that ethical culture, shared objectives, transparency, training and development, and economic incentives are the factors that push the employees to take part in CSR-related activities and attaining higher sustainable performance.Originality/valueThis study addresses the debate on the difference between cross-cultural studies related to implementing Western theories in shaping, developing and implementing business strategies, including CSR, HRM and sustainable performance in an Asian context
Wavelength tuning in the purple wavelengths using strain-controlled AlxGa1-xN/GaN disk-in-wire structures
AlxGa1-xN/GaN disk-in-wire polar nanostructures were fabricated, and their optical properties were studied. Wavelength tuning was observed by locally controlling the strain in each nanopillar via its diameter. The measured wavelength shift was in an excellent agreement with a one-dimensional strain relaxation model considering only the elastic and piezoelectric properties of the material. The inhomogeneous broadening decreases and internal quantum efficiency increases with a decreasing nanopillar diameter. The potential extension of strain-induced wavelength tuning across ultraviolet through near infrared was also discussed
- …