105 research outputs found

    An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions

    Full text link
    Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n=933) and validated in the remaining patients (n=552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation

    Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation.

    Get PDF
    BACKGROUND: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. METHODS: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. RESULTS: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. CONCLUSIONS: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF

    Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation

    Get PDF
    Background: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. / Methods: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. / Results: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. / Conclusions: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF

    Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium

    Get PDF
    BackgroundTools for the prediction of atrial fibrillation (AF) may identify high‐risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors.Methods and ResultsIndividual‐level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19% African Americans, 81% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment—Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5‐year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C‐statistic, 0.765; 95% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C‐statistic, 0.767; 95% CI, 0.750 to 0.783; categorical net reclassification improvement, −0.0032; 95% CI, −0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C‐statistic, 0.664; 95% CI, 0.632 to 0.697 and RS C‐statistic, 0.705; 95% CI, 0.664 to 0.747) and calibration was adequate.ConclusionA risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe

    Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval

    Get PDF
    Background: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. Methods: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. Results: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (P<1.2×10−6), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 (P=5.9×10−11) and SCN5A (P=1.1×10−7) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. Conclusions: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals

    Get PDF
    Common Fund of the Office of the Director of the National Institutes of Health. Additional funds were provided by the National Cancer Institute (NCI), National Human Genome Research Institute (NHGRI), National Heart, Lung, and Blood Institute (NHLBI), National Institute on Drug Abuse (NIDA), National Institute of Mental Health (NIMH), and National Institute of Neurological Disorders and Stroke (NINDS)
    corecore