17 research outputs found

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Searching for solar KDAR with DUNE

    Get PDF

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ (5σ) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Relational skills: needs experienced by nursing students Habilidades relacionales: necesidades sentidas por los estudiantes de enfermería Competências relacionais: necessidades sentidas pelos estudantes de enfermagem

    Get PDF
    OBJECTIVE: to identify the needs of nursing students in the field of relational competencies. METHOD: qualitative study with an exploratory-descriptive nature. The random sample included 62 students in the 2nd year of the nursing undergraduate program of a school located in the central region of Portugal. The inclusion criterion was the nonexistence of clinical teaching. Data were collected through a form designed to assess relational needs; content analysis was used to analyze data. RESULTS: the results indicated that the students' concept of nursing care at this stage of their education is focused on the performance of nursing tasks and techniques instead of on scientific knowledge. Overall, they are aware that greater personal development and better self-knowledge are determinant for their personal and social well-being and for them to become good professionals. CONCLUSION: these results will support the improvement of an intervention program to be developed with these students.<br>OBJETIVO: identificar las necesidades manifestadas por los estudiantes de enfermería en el área de las habilidades relacionales. MÉTODO: estudio, cualitativo con características exploratorio-descriptivas, la muestra aleatoria incluyó 62 estudiantes del 2º año del Curso de Licenciatura en Enfermería (Escuela de la Región Centro de Portugal). Se consideró como criterio de selección la inexistencia de realización de Enseño Clínico. Recogida de datos realizada por medio de la Ficha de Evaluación de Necesidades Relacionales con análisis de contenido de los datos. RESULTADOS: indicaron que en esta fase de la formación, los estudiantes detienen un concepto de cuidar en Enfermería centrado en la ejecución de tareas y técnicas de enfermería en vez de en la cientificidad del saber en Enfermería y, que globalmente saben que un mayor desarrollo personal, un mejor conocimiento de sí será determinante para el bienestar personal y social y serán buenos profesionales. CONCLUSIÓN: las evidencias permitirán apurar el programa de intervención a desarrollar con estos estudiantes.<br>OBJETIVO: identificar as necessidades manifestadas pelos estudantes de enfermagem na área das competências relacionais. MÉTODO: estudo, qualitativo com características exploratório-descritivas, a amostra aleatória incluiu 62 estudantes do 2º ano do Curso de Licenciatura em Enfermagem (Escola da Região Centro de Portugal). Considerou-se como critério de selecção a inexistência de realização de Ensino Clínico. Coleta de dados realizada por meio da Ficha de Avaliação de Necessidades Relacionais com análise de conteúdo dos dados. RESULTADOS: indicaram que nesta fase da formação, os estudantes detêm um conceito de cuidar em Enfermagem centrado na execução de tarefas e técnicas de enfermagem em vez de na cientificidade do saber em Enfermagem e, que globalmente estão cientes que um maior desenvolvimento pessoal, um melhor conhecimento de si será determinante para o bem-estar pessoal e social e ser um bom profissional. CONCLUSÃO: as evidências permitirão aprimorar o programa de intervenção a desenvolver com estes estudantes

    A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water

    Get PDF
    <div><p>Background</p><p>Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety.</p><p>Objectives</p><p>To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources.</p><p>Methods</p><p>We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of <i>Escherichia coli</i>, thermotolerant or total coliforms were included provided they tested at least ten samples or brands.</p><p>Results</p><p>A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141). Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6–8.1) and 13.6 (95% CI: 6.9–26.7) times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17–0.58) and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22). Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62) compared to other water sources used for consumption.</p><p>Conclusions</p><p>Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks.</p></div
    corecore