237 research outputs found

    The role of hepatic progenitor cells in predicting response to therapy in Egyptian patients with chronic hepatitis C, genotype 4

    Get PDF
    Background: Interferon therapy is used as a line of treatment of chronic hepatitis C virus (HCV) in several areas of the world including Egypt.Objective: Our aim was to investigate the value of hepatic progenitor cells (HPCs) in predicting response of patients with chronic HCV, genotype 4 to pegylated interferon (PEGIFN) plus ribavirin (RBV) therapy.Methods: Pre-treatment liver biopsies obtained from 110 patients with chronic HCV, genotype 4 were examined immunohisto- chemically for HPCs using cytokeratin19. The mean number of HPCs as ductular reaction (DR) and as isolated progenitor cells (IPCs) was counted in each case. The patients were classified into: those with sustained virological response (SVR) and those who did not achieve SVR. The results were compared between the two groups. Also, the relationships between HPCs and other clinico-pathologic variables were estimated using multivariate analysis.Results: The mean number of HPCs was the only independent predictor of therapeutic response, being significantly higher in non-responders (P = 0 for DR and P = 0.03 for IPCs). On the other hand, fibrosis stage and steatosis were the only independent factors which showed a significant direct association with the mean number of HPCs in the form of DR and IPCs (P = 0 for each).Conclusion: The number of HPCs provides prognostic information in chronic HCV since it is significantly associated with stage of fibrosis. More importantly, it can be used as a marker to predict response of patients with chronic HCV to PEGIFN plus RBV therapy.Keywords: Chronic hepatitis C, genotype 4, response to therapy, hepatic progenitor cells

    The role of hepatic progenitor cells in predicting response to therapy in Egyptian patients with chronic hepatitis C, genotype 4

    Get PDF
    Background: Interferon therapy is used as a line of treatment of chronic hepatitis C virus (HCV) in several areas of the world including Egypt. Objective: Our aim was to investigate the value of hepatic progenitor cells (HPCs) in predicting response of patients with chronic HCV, genotype 4 to pegylated interferon (PEGIFN) plus ribavirin (RBV) therapy. Methods: Pre-treatment liver biopsies obtained from 110 patients with chronic HCV, genotype 4 were examined immunohistochemically for HPCs using cytokeratin19. The mean number of HPCs as ductular reaction (DR) and as isolated progenitor cells (IPCs) was counted in each case. The patients were classified into: those with sustained virological response (SVR) and those who did not achieve SVR. The results were compared between the two groups. Also, the relationships between HPCs and other clinico-pathologic variables were estimated using multivariate analysis. Results: The mean number of HPCs was the only independent predictor of therapeutic response, being significantly higher in non-responders (P = 0 for DR and P = 0.03 for IPCs). On the other hand, fibrosis stage and steatosis were the only independent factors which showed a significant direct association with the mean number of HPCs in the form of DR and IPCs (P = 0 for each). Conclusion: The number of HPCs provides prognostic information in chronic HCV since it is significantly associated with stage of fibrosis. More importantly, it can be used as a marker to predict response of patients with chronic HCV to PEGIFN plus RBV therapy. DOI: https://dx.doi.org/10.4314/ahs.v19i1.14 Cite as: Helal T El A, Radwan NA, Mahmoud HA, Zaki AME, Ahmed NS, Wahib AAA, et al. The role of hepatic progenitor cells in predicting response to therapy in Egyptian patients with chronic hepatitis C, genotype 4. Afri Health Sci. 2019;19(1). 1411-1421. https://dx.doi.org/10.4314/ahs.v19i1.1

    Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008

    Get PDF
    A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect

    Gender Differences in Sleep Deprivation Effects on Risk and Inequality Aversion: Evidence from an Economic Experiment

    Get PDF
    Excessive working hours—even at night—are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC) is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects’ risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced) participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females’ reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making.The authors acknowledge financial support from the Spanish Ministry of Economic Competititveness (ECO2012-34928), Italian Ministry of University and Research MIUR (PRIN 20103S5RN3_002), Generalitat Valenciana (Research Projects Gruposo3/086), the Instituto Valenciano de Investigaciones Económicas (IVIE), and the Ministero della Salute (RF-2009-1528677)

    Effects of ex-vivo and in-vivo treatment with probiotics on the inflammasome in dogs with chronic enteropathy

    Get PDF
    Inflammasomes coordinate the maturation of IL-1β and IL-18 in response to danger signals. They are vital for maintenance of intestinal homeostasis and have been linked to chronic intestinal inflammation in humans. Probiotics have been advocated as treatment in intestinal inflammation. So far, no study has investigated the role of the inflammasome in canine chronic enteropathy (CE). In this study the intestinal expression of inflammasome components was assessed in CE dogs compared to controls, when treated with probiotic Enterococcus faecium (EF) ex-vivo and in-vivo. RNA extraction from endoscopic biopsies and reverse-transcriptase quantitative PCR was performed for NLRP3, casp-1, IL-1β and IL-18. Immunohistochemistry was performed to investigate protein expression in tissues. Gene expression of casp-1 and NLRP3 was lower in CE samples than controls. Ex-vivo treatment with EF reduced NLRP3 expression in control samples. Treatment of CE dogs with EF alongside dietary intervention had no effect on gene expression. In contrast, IL-1β protein expression in CE decreased with dietary treatment (but not with probiotics). The results of this study suggest that the inflammasome or its components may be partially involved in the inflammatory process seen in CE, but distinct from intestinal inflammation in humans

    Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy.

    Get PDF
    Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation

    The 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) reduces palatable food consumption and BOLD fMRI responses to food images in healthy female volunteers

    Get PDF
    RATIONALE: Brain 5-HT2C receptors form part of a neural network that controls eating behaviour. 5-HT2C receptor agonists decrease food intake by activating proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus, but recent research in rodents has suggested that 5-HT2C receptor agonists may also act via dopaminergic circuitry to reduce the rewarding value of food and other reinforcers. No mechanistic studies on the effects of 5-HT2C agonists on food intake in humans have been conducted to date. OBJECTIVES: The present study examined the effects of the 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) on food consumption, eating microstructure and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to food pictures in healthy female volunteers. METHODS: In a double-blind, placebo-controlled, crossover design, participants were randomized immediately after screening to receive oral mCPP (30mg) in a single morning dose, or placebo, in a counterbalanced order. Test foods were served from a Universal Eating Monitor (UEM) that measured eating rate and fMRI BOLD signals to the sight of food and non-food images were recorded. RESULTS: mCPP decreased rated appetite and intake of a palatable snack eaten in the absence of hunger but had no significant effect on the consumption of a pasta lunch (although pasta eating rate was reduced). mCPP also decreased BOLD fMRI responses to the sight of food pictures in areas of reward-associated circuitry. A post hoc analysis identified individual variability in the response to mCPP (exploratory responder-non-responder analysis). Some participants did not reduce their cookie intake after treatment with mCPP and this lack of response was associated with enhanced ratings of cookie pleasantness and enhanced baseline BOLD responses to food images in key reward and appetite circuitry. CONCLUSIONS: These results suggest that 5-HT2C receptor activation in humans inhibits food reward-related responding and that further investigation of stratification of responding to mCPP and other 5-HT2C receptor agonists is warranted

    The Interplay between Entamoeba and Enteropathogenic Bacteria Modulates Epithelial Cell Damage

    Get PDF
    In amoebiasis, a human disease that is a serious health problem in many developing countries, efforts have been made to identify responsible factors for the tissue damage inflicted by the parasite Entamoeba histolytica. This amoeba lives in the lumen of the colon without causing damage to the intestinal mucosa, but under unknown circumstances becomes invasive, destroying the intestinal tissue. Bacteria in the intestinal flora have been proposed as inducers of higher amoebic virulence, but the causes or mechanisms responsible for the induction are still undetermined. Mixed intestinal infections with Entamoeba histolytica and enteropathogenic bacteria, showing exacerbated manifestations of disease, are common in endemic countries. We implemented an experimental system to study amoebic virulence in the presence of pathogenic bacteria and its consequences on epithelial cells. Results showed that amoebae that ingested enteropathogenic bacteria became more virulent, causing more damage to epithelial cells. Bacteria induced release of inflammatory proteins by the epithelial cells that attracted amoebae, facilitating amoebic contact to the epithelial cells and higher damage. Our results, although a first approach to this complex problem, provide insights into amoebic infections, as interplay with other pathogens apparently influences the intestinal environment, the behavior of cells involved and the manifestations of the disease

    Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers

    Get PDF
    Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner

    Bi-allelic <em>ACBD6</em> variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders
    • …
    corecore