112 research outputs found

    Plastic accumulation in the Mediterranean Sea

    Get PDF
    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region

    Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics

    Get PDF
    Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics

    Intertwined superfluid and density wave order in two-dimensional 4He

    Get PDF
    Superfluidity is a manifestation of the operation of the laws of quantum mechanics on a macroscopic scale. The conditions under which superfluidity becomes manifest have been extensively explored experimentally in both quantum liquids (liquid 4He being the canonical example) and ultracold atomic gases1, 2, including as a function of dimensionality3, 4. Of particular interest is the hitherto unresolved question of whether a solid can be superfluid5, 6. Here we report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two-dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the superfluid response of the second atomic layer of 4He adsorbed on the surface of graphite, over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and subsequently collapsing towards a quantum critical point. The unusual temperature dependence of the superfluid density in the limit of zero temperature and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry

    Unsuccessful therapy with adefovir and entecavir-tenofovir in a patient with chronic hepatitis B infection with previous resistance to lamivudine: a fourteen-year evolution of hepatitis B virus mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complex mutants can be selected under sequential selective pressure by HBV therapy. To determine hepatitis B virus genomic evolution during antiviral therapy we characterized the HBV quasi-species in a patient who did no respond to therapy following lamivudine breakthrough for a period of 14 years.</p> <p>Case Presentation</p> <p>The polymerase and precore/core genes were amplified and sequenced at determined intervals in a period of 14 years. HBV viral load and HBeAg/Anti-HBe serological profiles as well as amino transferase levels were also measured. A mixture of lamivudine-resistant genotype A2 HBV strains harboring the rtM204V mutation coexisted in the patient following viral breakthrough to lamivudine. The L180M+M204V dominant mutant displayed strong lamivudine-resistance. As therapy was changed to adefovir, then to entecavir, and finally to entecavir-tenofovir the viral load showed fluctuations but lamivudine-resistant strains continued to be selected, with minor contributions to the HBV quasi-species composition of additional resistance-associated mutations. At the end of the 14-year follow up period, high viral loads were predominant, with viral strains harboring the lamivudine-resistance signature rtL180M+M204V. The precore/core frame A1762T and G1764A double mutation was detected before treatment and remaining in this condition during the entire follow-up. Specific entecavir and tenofovir primary resistance-associated mutations were not detected at any time. Plasma concentrations of tenofovir indicated adequate metabolism of the drug.</p> <p>Conclusions</p> <p>We report the selection of HBV mutants carrying well-defined primary resistance mutations that escaped lamivudine in a fourteen-year follow-up period. With the exception of tenofovir resistance mutations, subsequent unselected primary resistance mutations were detected as minor populations into the HBV quasispecies composition during adefovir or entecavir monotherapies. Although tenofovir is considered an appropriate therapeutic alternative for the treatment of entecavir-unresponsive patients, its use was not effective in the case reported here.</p

    Atmospheric electrification in dusty, reactive gases in the solar system and beyond

    Get PDF
    Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation

    Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi

    Get PDF
    Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe

    Genetics and complement in atypical HUS

    Get PDF
    Central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS) is over-activation of the alternative pathway of complement. Following the initial discovery of mutations in the complement regulatory protein, factor H, mutations have been described in factor I, membrane cofactor protein and thrombomodulin, which also result in decreased complement regulation. Autoantibodies to factor H have also been reported to impair complement regulation in aHUS. More recently, gain of function mutations in the complement components C3 and Factor B have been seen. This review focuses on the genetic causes of aHUS, their functional consequences, and clinical effect
    corecore