6 research outputs found

    New Dinuclear Macrocyclic Copper(II) Complexes as Potentially Fluorescent and Magnetic Materials

    No full text
    Two dinuclear copper(II) complexes with macrocyclic Schiff bases K1 and K2 were prepared by the template reaction of (R)-(+)-1,1′-binaphthalene-2,2′-diamine and 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde K1, or 4-tert-butyl-2,6-diformylphenol K2 with copper(II) chloride dihydrate. The compounds were characterized by spectroscopic methods. X-ray crystal structure determination and DFT calculations confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of K2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The magnetic study revealed very strong antiferromagnetic CuII-CuII exchange interactions, which were supported by magneto-structural correlation and DFT calculations conducted within a broken symmetry (BS) framework. Complexes K1 and K2 exhibited luminescent properties that may be of great importance in the search for new OLEDs. Both K1 and K2 complexes showed emissions in the range of 392–424 nm in solutions at various polarities. Thin materials of the studied compounds were deposited on Si(111) by the spin-coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), and fluorescence spectroscopy. The thermally deposited K1 and K2 materials showed high fluorescence intensity in the range of 318–531 nm for K1/Si and 326–472 nm for the K2/Si material, indicating that they could be used in optical devices

    Preclinical Development of a Bispecific Antibody that Safely and Effectively Targets CD19 and CD47 for the Treatment of B-Cell Lymphoma and Leukemia

    Get PDF
    International audienceCD47, an ubiquitously expressed innate immune checkpoint receptor that serves as a universal "don't eat me" signal of phagocytosis, is often upregulated by hematologic and solid cancers to evade immune surveillance. Development of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hemotoxicity including anemia. To overcome such liabilities, we have developed a fully human bispecific antibody, NI-1701, designed to coengage CD47 and CD19 selectively on B cells. NI-1701 demonstrates favorable elimination kinetics with no deleterious effects seen on hematologic parameters following single or multiple administrations to nonhuman primates. Potent in vitro and in vivo activity is induced by NI-1701 to kill cancer cells across a plethora of B-cell malignancies and control tumor growth in xenograft mouse models. The mechanism affording maximal tumor growth inhibition by NI-1701 is dependent on the coengagement of CD47/CD19 on B cells inducing potent antibody-dependent cellular phagocytosis of the targeted cells. NI-1701-induced control of tumor growth in immunodeficient NOD/SCID mice was more effective than that achieved with the anti-CD20 targeted antibody, rituximab. Interestingly, a synergistic effect was seen when tumor-implanted mice were coadministered NI-1701 and rituximab leading to significantly improved tumor growth inhibition and regression in some animals. We describe herein, a novel bispecific antibody approach aimed at sensitizing B cells to become more readily phagocytosed and eliminated thus offering an alternative or adjunct therapeutic option to patients with B-cell malignancies refractory/resistant to anti-CD20-targeted therapy
    corecore