1,198 research outputs found

    The Black Hole Candidate LSI+61303

    Full text link
    In recent years, fundamental relationships for the black hole X-ray binaries have been established between their X-ray luminosity LXL_X and the photon index Γ\Gamma of their X-ray spectrum. For the moderate-luminosity regime, an anti-correlation between Γ\Gamma and LXL_X has been observed. In this article, aimed to verify if the moderate luminous X-ray binary system LSI +61303 is a black hole, we analyse SwiftSwift observations of LSI +61303. We compare the derived LXL_X vs Γ\Gamma distribution, first with the statistical trend for black hole X-ray binaries, then with the trend of the pulsar PSR B1259-63, and finally with the individual trends of the black hole X-ray binaries Swift J1357.2-0933 and V404 Cygni. We find that the system PSR B1259-63 shows a positive correlation between Γ\Gamma and LXL_X, whereas in contrast LSI +61303 shows the same anti-correlation as for black hole X-ray binaries. Moreover, the trend of LSI +61303 in the LXL_X/LEddington−ΓL_{Eddington} - \Gamma plane overlaps with that of the two black holes Swift J1357.2-0933 and V404 Cygni. All three systems, Swift J1357.2-0933, V404 Cygni and LSI +61303 well trace the last part of the evolution of accreting black holes at moderate-luminosity until their drop to quiescence.Comment: 5 pages, 4 figures, MNRAS accepte

    The gamma-ray emitting microquasar LSI+61303

    Get PDF
    LS I +61 303 is one of the most studied X-ray binary systems because of its two peculiarities: On the one hand being the probable counterpart of the variable gamma ray source 2CG 135+01 (Gregory and Taylor 1978; Tavani et al. 1998) and on the other hand being a periodic radio source (Taylor and Gregory 1982). The recent discovery of a radio emitting jet extending ca. 200 AU at both sides of a central core (Massi et al. 2004) in all evidence has shown the occurrence of accretion/ejection processes in this system. However, the radio outbursts do not occur at periastron passage, where the accretion is at its maximum, but several days later. In addition, when the gamma-ray emission of 2CG 135+01 is examined along the orbital phase of LS I +61 303 one sees that this emission seems to peak at periastron passage (Massi 2004). Here in detail we analyse the trend of the gamma-ray data versus orbital phase and discuss the delay between peaks at gamma-rays and in the radio band within the framework of a two-peak accretion/ejection model proposed by Taylor et al. (1992) and further developed by Marti' and Paredes (1995).Comment: To be published in the proceedings of the Symposium on High-Energy Gamma-Ray Astronomy, Heidelberg, July 26-30, 2004 (AIP Proceedings Series

    Triggered massive-star formation on the borders of Galactic HII regions. III. Star formation at the periphery of Sh2-219

    Get PDF
    Context. Massive-star formation triggered by the expansion of HII regions. Aims. To understand if sequential star formation is taking place at the periphery of the HII region Sh2-219. Methods. We present 12CO(2-1) line observations of this region, obtained at the IRAM 30-m telescope (Pico Veleta, Spain). Results. In the optical, Sh2-219 is spherically symmetric around its exciting star; furthermore it is surrounded along three quarters of its periphery by a ring of atomic hydrogen. This spherical symmetry breaks down at infrared and millimetre wavelengths. A molecular cloud of about 2000\msol lies at the southwestern border of Sh2-219, in the HI gap. Two molecular condensations, elongated along the ionization front, probably result from the interaction between the expanding HII region and the molecular cloud. In this region of interaction there lies a cluster containing many highly reddened stars, as well as a massive star exciting an ultracompact HII region. More surprisingly, the brightest parts of the molecular cloud form a `chimney', perpendicular to the ionization front. This chimney is closed at its south-west extremity by H-alpha walls, thus forming a cavity. The whole structure is 7.5 pc long. A luminous H-alpha emission-line star, lying at one end of the chimney near the ionization front, may be responsible for this structure. Confrontation of the observations with models of HII region evolution shows that Sh2-219 is probably 10^5 yr old. The age and origin of the near-IR cluster observed on the border of Sh2-219 remain unknown.Comment: 11 pages, 10 figures. To be published in A&

    Lanthanoid tetrazole coordination complexes

    Get PDF
    While tetrazole derivatives are well established as anionic ligands for d-block elements, there is a growing interest in lanthanoid complexes of these compounds. Diverse structural chemistry results from the presence of four potential donor N atoms, and the conjugated nature of the heterocycle can impact on the photophysical properties of the complexes. This review examines the range of structurally characterised lanthanoid–tetrazolato complexes, focussing on the structural features of the ligand that impact on the tendency to interact with the first or second coordination spheres

    Synchrotron emission from the T Tauri binary system V773 Tau A

    Full text link
    The pre-main sequence binary system V773 Tau A shows remarkable flaring activity around periastron passage. Here, we present the observation of such a flare at a wavelength of 3 mm (90 GHz) performed with the Plateau de Bure Interferometer. We examine different possible causes for the energy losses responsible for the e-folding time of 2.3 hours of that flare. We exclude synchrotron, collisional, and inverse Compton losses because they are not consistent with observational constraints, and we propose that the fading of the emission is due to the leakage of electrons themselves at each reflection between the two mirror points of the magnetic structure partially trapping them. The magnetic structure compatible with both our leakage model and previous observations is that of a helmet streamer that, as in the solar case, can occur at the top of the X-ray-emitting, stellar-sized coronal loops of one of the stars. The streamer may extend up to 20 R and interact with the corona of the other star at periastron passage, causing recurring flares. The inferred magnetic field strength at the two mirror points of the helmet streamer is in the range 0.12 - 125 G, and the corresponding Lorentz factor, gamma, of the partially trapped electrons is in the range 20 < gamma < 632. We therefore rule out that the emission could be of gyro-synchrotron nature: the derived high Lorentz factor proves that the nature of the emission at 90 GHz from this pre-main binary system is synchrotron radiation. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Comment: 8 pages, 5 figures, A&A in pres

    Silicon Carbide as Base Material for MEMS Sensors of Aerospace Use: An Overview

    Get PDF
    This paper discusses the use of silicon carbide (SiC), in bulk and thin-film form, in MEMS (Micro-Electro-Mechanical Systems) sensors for extreme environment applications, especially in aerospace. The physical and chemical properties of SiC that make it a suitable material for electronic devices and sensors are described. Concepts, developments and applications of MEMS technology are presented. An overview of the current stage of development of SiC-based MEMS sensors and an analysis of research conducted in this area in Brazil and abroad, both in universities and industries are also presented. The recent progress made, difficulties encountered and the impact of these investigations are discussed as well as the outlook for the near future.Este artigo discute o emprego do carbeto de silĂ­cio (SiC), na forma de substrato e filme fino, em sensores MEMS (Micro-Electro-Mechanical Systems) para aplicaçÔes em ambientes sujeitos a condiçÔes extremas, especialmente no setor aeroespacial. As propriedades fĂ­sicas e quĂ­micas do SiC que o tornam um material adequado para dispositivos eletrĂŽnicos e sensores sĂŁo descritas. Os conceitos, evolução e aplicaçÔes da tecnologia MEMS sĂŁo apresentados. Uma visĂŁo geral sobre o estĂĄgio atual de desenvolvimento de sensores MEMS baseados em SiC e uma anĂĄlise das pesquisas realizadas nesta ĂĄrea no exterior e no Brasil, tanto nas universidades quanto nas indĂșstrias, sĂŁo tambĂ©m apresentadas. Os recentes avanços alcançados, as dificuldades encontradas e o impacto dessas pesquisas sĂŁo discutidos, bem como as perspectivas para um futuro prĂłximo.FATEC CEETEPS Departamento de Ensino GeralUNIVAP Instituto de Pesquisa e DesenvolvimentoUNIFESP Instituto de CiĂȘncia e TecnologiaUNIFESP, Instituto de CiĂȘncia e TecnologiaSciEL

    The inner circumstellar disk of the UX Ori star V1026 Sco

    Full text link
    The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. We investigate the structure of the circumstellar environment of the UX~Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 +- 0.06 AU in the H band and 0.18 +- 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257^{+133}_{-53} K at the inner rim and extends from 0.19 +- 0.01 AU to 0.23 +- 0.02 AU. The outer disk begins at 1.35^{+0.19}_{-0.20} AU and has an inner temperature of 334^{+35}_{-17} K. The derived inclination of 48.6^{+2.9}_{-3.6}deg approximately agrees with the inclination derived with the geometric model (49 +- 5deg in the K band and 50 +- 11deg in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 +- 9deg (K band; 179 +- 17deg in the H band) and 169.3^{+4.2}_{-6.7}deg, respectively. The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50deg is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star

    AMBER/VLTI observations of the B[e] star MWC 300

    Get PDF
    Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC 300 with the VLTI/AMBER instrument in the H and K bands and compared these observations with temperature-gradient models to derive model parameters. Results. The measured low visibility values, wavelength dependence of the visibilities, and wavelength dependence of the closure phase directly suggest that MWC 300 consists of a resolved disk and a close binary. We present a model consisting of a binary and a temperature-gradient disk that is able to reproduce the visibilities, closure phases, and spectral energy distribution. This model allows us to constrain the projected binary separation (~4.4 mas or ~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature power-law index, and other parameters.Comment: 4 pages, 1 figure, accepted by A&

    Insights into the Carbon chemistry of Mon R2

    Full text link
    Aiming to learn about the chemistry of the dense PDR around the ultracompact (UC) HII region in Mon R2, we have observed a series of mm-wavelength transitions of C3H2 and C2H. In addition, we have traced the distribution of other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with the reactive ions recently detected, have been considered to determine the physical conditions and to model the PDR chemistry. We then identified two kind of molecules. The first group, formed by the reactive ions (CO+, HOC+) and small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is presumably exposed to a high UV field (hence we called it as "high UV", or HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5 mag. A second group (less exposed to the UV field, and hence called "low UV", or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av > 5 mag). While the abundances of the HUV molecules can be explained by gas phase models, this is not the case for the studied LUV ones. Although some efficient gas-phase reactions might be lacking, grain chemistry sounds like a probable mechanism able to explain the observed enhancement of HCO and SiO. Within this scenario, the interaction of UV photons with grains produces an important effect on the molecular gas chemistry and constitutes the first evidence of an ionization front created by the UC HII region carving its host molecular cloud. The physical conditions and kinematics of the gas layer which surrounds the UC HII region were derived from the HUV molecules. Molecular hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations. Such high densities suggest that the HII region could be pressure-confined by the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa

    Accretion vs colliding wind models for the gamma-ray binary LS I +61 303: an assessment

    Get PDF
    LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission at up TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, while another centers on a relativistic jet powered by accretion. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model. We wish here to carry out a quantitative assessment of these competing models for this extraordinary source. We apply a 3D SPH code for dynamical simulations of both the pulsar-wind-interaction and accretion-jet models. The former yields a description of the shape of the wind-wind interaction surface. The latter provides an estimation of the accretion rate. The results allow critical evaluation of how the two distinct models confront the data in various wavebands under a range of conditions. When one accounts for the 3D dynamical wind interaction under realistic constraints for the relative strength of the B-star and pulsar winds, the resulting form of the interaction front does not match the putative "cometary tail" claimed from radio observations. On the other hand, dynamical simulations of the accretion-jet model indicate that the orbital phase variation of accretion power includes a secondary broad peak well away from periastron, thus providing a plausible way to explain the observed TeV gamma ray emission toward apastron. We conclude that the colliding-wind model is not clearly established for LS I +61 303, while the accretion-jet model can reproduce many key characteristics of the observed TeV gamma-ray emission.Comment: Accepted for publication in A&A. The resolution of the figures is lower than in the journal paper to minimize file sizes. Seven pages, 5 figure
    • 

    corecore