Aiming to learn about the chemistry of the dense PDR around the ultracompact
(UC) HII region in Mon R2, we have observed a series of mm-wavelength
transitions of C3H2 and C2H. In addition, we have traced the distribution of
other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with
the reactive ions recently detected, have been considered to determine the
physical conditions and to model the PDR chemistry. We then identified two kind
of molecules. The first group, formed by the reactive ions (CO+, HOC+) and
small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is
presumably exposed to a high UV field (hence we called it as "high UV", or
HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5
mag. A second group (less exposed to the UV field, and hence called "low UV",
or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av
> 5 mag). While the abundances of the HUV molecules can be explained by gas
phase models, this is not the case for the studied LUV ones. Although some
efficient gas-phase reactions might be lacking, grain chemistry sounds like a
probable mechanism able to explain the observed enhancement of HCO and SiO.
Within this scenario, the interaction of UV photons with grains produces an
important effect on the molecular gas chemistry and constitutes the first
evidence of an ionization front created by the UC HII region carving its host
molecular cloud. The physical conditions and kinematics of the gas layer which
surrounds the UC HII region were derived from the HUV molecules. Molecular
hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations.
Such high densities suggest that the HII region could be pressure-confined by
the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa