11 research outputs found

    Photocatalytic degradation of coomassie blue G-250 by magnetic NiFe2_{{2}}O4_{{4}}/ZnO nanocomposite

    Get PDF
    Photocatalysts NiFe2O4, ZnO, and NiFe2O4/ZnO were successfully synthesized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry techniques. The prepared photocatalysts demonstrated significant photocatalytic efficiency under visible and UV light. The rate of dye degradation of NiFe2O4/ZnO in both UV and visible ranges exceeded that of ZnO and NiFe2O4. Moreover, NiFe2O4/ZnO exhibited the most excellent photocatalytic efficiency toward Coomassie blue G-250. The effect of pH on the dye degradation rate was also monitored. Accordingly, 96.90% and 68.55% dye degradation efficiencies were achieved by NiFe2O4/ZnO in 30 min under UV and visible light, respectively

    Photocatalytic degradation of coomassie blue G-250 by magnetic NiFe2_{{2}}O4_{{4}}/ZnO nanocomposite

    Get PDF
    Photocatalysts NiFe2O4, ZnO, and NiFe2O4/ZnO were successfully synthesized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry techniques. The prepared photocatalysts demonstrated significant photocatalytic efficiency under visible and UV light. The rate of dye degradation of NiFe2O4/ZnO in both UV and visible ranges exceeded that of ZnO and NiFe2O4. Moreover, NiFe2O4/ZnO exhibited the most excellent photocatalytic efficiency toward Coomassie blue G-250. The effect of pH on the dye degradation rate was also monitored. Accordingly, 96.90% and 68.55% dye degradation efficiencies were achieved by NiFe2O4/ZnO in 30 min under UV and visible light, respectively

    Palladium nanoparticles supported on fluorine-doped tin oxide as an efficient heterogeneous catalyst for Suzuki coupling and 4-nitrophenol reduction

    Get PDF
    Immobilization of palladium nanoparticles onto the fluorine-doped tin oxide (FTO) as support Pd/FTO, resulted in a highly active heterogeneous catalyst for Suzuki-Miyaura cross-coupling reactions and 4-nitrophenol reduction. The Pd/FTO catalyst has been synthesized by immobilization of palladium nanoparticles onto FTO via a simple impregnation method. ICP-MS analysis confirmed that there is 0.11 mmol/g of palladium was loaded successfully on FTO support. The crystallinity, morphologies, compositions and surface properties of Pd/FTO were fully characterized by various techniques. It was further examined for its catalytic activity and robustness in Suzuki coupling reaction with different aryl halides and solvents. The yields obtained from Suzuki coupling reactions were basically over 80%. The prepared catalyst was also tested on mild reaction such as reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Pd/FTO catalyst exhibited high catalytic activity towards 4-NP reduction with a rate constant of 1.776 min(-1) and turnover frequency (TOF) value of 29.1 hr(-1). The findings revealed that Pd/FTO also maintained its high stability for five consecutive runs in Suzuki reactions and 4-NP reductions. The catalyst showed excellent catalytic activities by using a small amount of Pd/FTO for the Suzuki coupling reaction and 4-NP reduction

    Imidazo[1,2-c]quinazolines as a novel and potent scaffold of α-glucosidase inhibitors: design, synthesis, biological evaluations, and in silico studies

    No full text
    Abstract α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a–c and 11a–o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 μM to 308.33 ± 0.06 μM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 μM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 μM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a–c and 11a–o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively
    corecore